Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Diuretics in the treatment of patients who present congestive heart failure and hypertension

Abstract

The main operational objective of diuretic therapy in patients who present congestive heart failure and hypertension is to reduce or to suppress excess bodily fluid. Effective diuretic therapy decreases cardiac size when the heart is dilated, and it reduces lung congestion and excess water. Consequently, external respiratory work diminishes and cardiac output would be redistributed in favour of systemic vascular beds other than that of the respiratory muscles; dyspnoea decreases markedly and there is a slight reduction in fatigue. This clinical improvement and the fall in body weight caused by diuretics entail an increase in effort capacity. Subsequent exercise training ameliorates the abnormal ventilatory response to physical effort and the skeletal muscle myopathy that occur in heart failure, and thereby it attenuates dyspnoea and decreases fatigue further. Loop and/or thiazide-type diuretics may be used to augment natriuresis in patients with congestive heart failure and hypertension. The state of renal function, the existence of certain co-morbid conditions, potential untoward drug actions, and possible interactions of diuretics with nutrients and with other drugs are some of the factors that must be considered at the time of deciding on the diuretic drug(s) and dose(s) to be prescribed. Spironolactone has been found to increase life expectancy and to reduce hospitalisation frequency when added to the conventional therapeutic regimen of patients with advanced congestive heart failure and systolic dysfunction. Therefore, spironolactone should be the drug of choice to oppose the kaliuretic effect of a loop or of a thiazide-type diuretic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Reyes AJ . Pathophysiological basis of the use of diuretics in congestive heart failure Prog Pharmacol Clin Pharmacol 1995 10/3: 75–89

    Google Scholar 

  2. Coodley EL, Nandi PS, Chiotellis P . Evaluation of a new diuretic, diapamide, in congestive heart failure J Clin Pharmacol 1979 19: 127–136

    CAS  PubMed  Google Scholar 

  3. Dixon DW, Barwold-Gohlke C, Gunnar RM . Comparative efficacy and safety of bumetamide and furosemide in long-term treatment of edema due to congestive heart failure J Clin Pharmacol 1981 21: 680–687

    CAS  PubMed  Google Scholar 

  4. Küpper AJF et al. Cross-over comparison of the fixed combination of hydrochlorothiazide and triamterene and the free combination of furosemide and triamterene in the maintenance treatment of congestive heart failure Eur J Clin Pharmacol 1986 30: 341–343

    Google Scholar 

  5. Achhammer l . Long term efficacy and tolerance of torasemide in congestive heart failure Prog Pharmacol Clin Pharmacol 1990 8/1: 127–136

    Google Scholar 

  6. Rutishauser W, Rhomberg F, Sack P . Über die Veränderungen der Kreislaufzeiten bei der Behandlung der hämodynamischen Herzinsuffizienz mit Diuretica und Herzglycosiden Helv Med Acta 1960 27: 729–734

    CAS  PubMed  Google Scholar 

  7. Nishijima H et al. Acute and chronic hemodynamic effects of the basic therapeutic regimen for congestive heart failure. Diuretics, low salt diet and bed rest Jpn Heart J 1984 25: 571–585

    CAS  PubMed  Google Scholar 

  8. Haerer W et al. Acute and chronic effects of diuretic monotherapy with piretanide in congestive heart failure—a placebo-controlled trial Cardiovasc Drugs Ther 1990 4: 515–522

    CAS  PubMed  Google Scholar 

  9. Sverzellati E et al. Lung water is a critical determinant of functional capacity in congestive heart failure J Cardiac Fail 1998 4 (Suppl 1): 15 (abstract)

    Google Scholar 

  10. Reyes AJ . The Stanley H. Taylor Memorial Lecture: diuretics in heart failure. Understanding the mechanism of the clinical improvement In: Reyes AJ,MaranhaAuml;o MFC (eds) Cardiovascular Pharmacotherapy. Proceedings of the 9th International Congress on Cardiovascular Pharmacotherapy Monduzzi: Bologna 2000 pp 91–95

    Google Scholar 

  11. Crippa G et al. Intrinsic possibilities of chest X-rays as a means to assess pulmonary congestion and water J Am Coll Cardiol 1998 31: 63C (abstract)

    Google Scholar 

  12. Sverzellati E et al. Functional purport of the cardiothoracic ratio in congestive heart failure J Cardiac Fail 1998 4 (Suppl 1): 44 (abstract)

    Google Scholar 

  13. Acosta-Barrios T, Reyes AJ, Leary WP, van der Byl K . Effects of xipamide in hypertensivepatients with cardiac insufficiency: a clinical appraisal Curr Ther Res 1983 33: 855–859

    Google Scholar 

  14. Lipkin DP, Poole-Wilson P . Symptoms limiting exercise in chronic heart failure BMJ 1992 292: 1030–1031

    Google Scholar 

  15. Lipkin DP, Canepa-Anson R, Stephens MR, Poole-Wilson PA . Factors determining symptoms in heart failure: comparison of fast and slow exercise tests Br Heart J 1986 55: 439–445

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coats AJS . Origin of symptoms in heart failure Cardiovasc Drugs Ther 1997 11: 265–272

    PubMed  Google Scholar 

  17. Reyes AJ . Diuretics in heart failure. In: Puschett JB, Greenberg A (eds) Diuretics II: Chemistry, Pharmacology, and Clinical Applications Elsevier Science: New York 1987 332–344

    Google Scholar 

  18. Reyes AJ . Aspects of the mechanism of action of diuretics in heart failure. In: Andreucci VE, Dal Canton A (eds) Diuretics: Basic, Pharmacological, and Clinical Aspects Martinus Nijhoff: Boston 1987 344–349

    Google Scholar 

  19. Reyes AJ . Therapy with diuretics in congestive heart failure Prog Pharmacol 1988 6/3: 167–192

    Google Scholar 

  20. Reyes AJ . Actions of diuretics on the functional processes of congestive heart failure: from facts to heuristic hypotheses Prog Pharmacol Clin Pharmacol 1992 9: 441–460

    CAS  Google Scholar 

  21. Reyes AJ . Loop diuretics versus others in the treatment of congestive heart failure after myocardial infarction Cardiovasc Drugs Ther 1993 7: 869–876

    CAS  PubMed  Google Scholar 

  22. Zelis R, Sinoway L, Musch T, Davis D . The peripheral distribution of cardiac output in heart failure Z Kardiol 1988 77 (Suppl 5): 61–65

    Google Scholar 

  23. Matthay MA, Tibayan FA . Mechanisms for the formation and reabsorption of pulmonary edema. In: Cosentino AM, Martin RJ (eds) Cardiothoracic Interrelationships in Clinical Practice Futura: Armonk, NY 1997 31–53

    Google Scholar 

  24. Haddad PA, Bailey CA, Gray A . Respiratory considerations in congestive heart failure: pathophysiology, assessment and management. In: Cosentino AM, Martin RJ (eds) Cardiothoracic Interrelationships in Clinical Practice Futura: Armonk, NY 1997 69–122

    Google Scholar 

  25. Schaufelberger M et al. Skeletal muscle alterations inpatients with chronic heart failure Eur Heart J 1997 18: 971–980

    CAS  PubMed  Google Scholar 

  26. Mancini DM, Henson D, LaManca J, Levine S . Respiratory muscle function and dyspnea inpatients with chronic congestive heart failure Circulation 1992 86: 909–918

    CAS  PubMed  Google Scholar 

  27. Cowley AJ et al. Symptomatic assessment ofpatients with heart failure: double-blind comparison of increasing doses of diuretics and captopril in moderate heart failure Lancet 1986 2: 770–772

    CAS  PubMed  Google Scholar 

  28. Biddle TL, Yu PN . Effect of furosemide on hemodynamics and lung water in acute pulmonary edema secondary to myocardial infarction Am J Cardiol 1979 43: 86–90

    CAS  PubMed  Google Scholar 

  29. Sullivan MJ, Higginbotham MB, Cobb FR . Exercise training inpatients with severe left ventricular dysfunction: hemodynamic and metabolic effects Circulation 1988 78: 506–515

    CAS  PubMed  Google Scholar 

  30. Minotti JR et al. Skeletal muscle response to exercise training in congestive heart failure J Clin Invest 1990 86: 751–758

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Adamapoulos S et al. Physical training improves skeletal muscle metabolism inpatients with chronic heart failure J Am Coll Cardiol 1993 21: 1101–1106

    Google Scholar 

  32. Stratton JR et al. Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure J Clin Invest 1994 76: 1572–1582

    Google Scholar 

  33. Hambrecht R et al. Physical training inpatients with stable chronic heart failure: effects on cardiorepiratory fitness and ultrastructural abnormalities of leg muscles J Am Coll Cardiol 1995 25: 1239–1249

    CAS  PubMed  Google Scholar 

  34. Coats AJS et al. Controlled trial of physical training in chronic heart failure: exercise performance, hemodynamics, ventilation, and autonomic function Circulation 1992 85: 2119–2131

    CAS  PubMed  Google Scholar 

  35. Mancini DM et al. Benefit of selective respiratory muscle training on exercise capacity inpatients with chronic congestive heart failure Circulation 1995 91: 320–329

    CAS  PubMed  Google Scholar 

  36. Kiilavuory K et al. Effect of physical training on exercise capacity and gas exchange inpatients with chronic heart failure Chest 1999 110: 985–991

    Google Scholar 

  37. Reyes AJ, Taylor SH . Diuretics in cardiovascular medicine: the new clinicopharmacological bases that matter Cardiovasc Drugs Ther 1999 13: 371–398

    CAS  PubMed  Google Scholar 

  38. Velázquez H . Thiazide diuretics Renal Physiol 1987 10: 184–197

    PubMed  Google Scholar 

  39. Greger R, Wangemann P . Loop diuretics Renal Physiol 1987 10: 174–183

    CAS  PubMed  Google Scholar 

  40. Horisberger J-D, Giebisch G . Potassium-sparing diuretics Renal Physiol 1987 10: 198–220

    CAS  PubMed  Google Scholar 

  41. Reyes AJ . Effects of diuretics on renal excretory function Eur Heart J 1992 13 (Suppl G): 15–21

    Google Scholar 

  42. Reyes AJ, Leary WP . Clinicopharmacological definition of the potency of diuretics and reclassification of diuretics by their clinicopharmacological potency Prog Pharmacol Clin Pharmacol 1992 9: 131–146

    CAS  Google Scholar 

  43. Leary WP, Reyes AJ, van der Byl K . The antialdosterone substance spironolactone is a facultative natriuretic, antikaliuretic and antimagnesiuretic in man. In: Puschett JB, Greenberg A (eds) Diuretics IV: Chemistry, Pharmacology and Clinical Applications Excerpta Medica: Amsterdam 1993 391–394

    Google Scholar 

  44. Pitt B et al. The effect of spironolactone on morbidity and mortality inpatients with severe heart failure N Engl J Med 1999 341: 709–717

    CAS  PubMed  Google Scholar 

  45. Weber KT, Brilla CG, Campbell SE . Regulatory mechanisms of myocardial hypertrophy and fibrosis: results of in vivo studies Cardiology 1992 81: 266–273

    CAS  PubMed  Google Scholar 

  46. Brilla CG . Aldosterone and myocardial fibrosis in heart failure Herz 2000 25: 299–306

    CAS  PubMed  Google Scholar 

  47. Materson BJ . Diuretic therapy of hypertension in the United States: low-dose becomes lower Prog Pharmacol Clin Pharmacol 1995 10/3: 33–45

    Google Scholar 

  48. Leary WP, Reyes AJ, van der Byl K . Interactions between different diuretics and between diuretics and other drugs on renal excretions in healthy man: mechanisms and clinical implications Prog Pharmacol Clin Pharmacol 1992 9: 317–360

    CAS  Google Scholar 

  49. van der Byl K, Leary WP, Reyes AJ . Renal excretory actions of diuretics in congestive heart failure Prog Pharmacol Clin Pharmacol 1992 9: 371–380 1992

    Google Scholar 

  50. Cutillo AG . The clinical assessment of lung water Chest 1987 92: 319–325

    CAS  PubMed  Google Scholar 

  51. Brater DC . Diuretic resistance in chronic congestive heart failure: combinations of relatively low doses rather than very high doses Prog Pharmacol Clin Pharmacol 1995 10/3: 119–129

    Google Scholar 

  52. Bayliss J et al. Untreated heart failure: clinical and neuroendocrine effects of introducing diuretics Br Heart J 1987 57: 17–22

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Westheim AS et al. Hemodynamic and neuroendocrine effects for candoxatril and frusemide in mild stable chronic heart failure J Am Coll Cardiol 1999 34: 1794–1801

    CAS  PubMed  Google Scholar 

  54. Francis GS et al. Acute vasoconstrictor response to intravenous furosemide inpatients with chronic congestive heart failure Ann Intern Med 1985 103: 1–6

    CAS  PubMed  Google Scholar 

  55. Schrier RW, Martin PY . Recent advances in the understanding of water metabolism in heart failure Adv Exp Med Biol 1998 449: 415–426

    CAS  PubMed  Google Scholar 

  56. Spital A . Diuretic-induced hyponatremia Am J Nephrol 1999 19: 447–452

    CAS  PubMed  Google Scholar 

  57. Reyes AJ, Leary WP . Kaliuretic potency of thirty-one oral formulations of diuretics: report on a study series in progress Am J Hypertens 2000 13: 114A (abstract)

    Google Scholar 

  58. Cohn JN, Kowey PR, Whelton PK, Prisant LM . New guidelines for potassium replacement in clinical practice: a contemporary review by the National Council on Potassium in Clinical Practice Arch Intern Med 2000 160: 2429–2436

    CAS  PubMed  Google Scholar 

  59. Ponce SP, Jennings AE, Madias NE, Harrington JT . Drug-induced hyperkalemia Medicine 1985 64: 357–370

    CAS  PubMed  Google Scholar 

  60. Preston RA, Hirsh MJ, Oster JR, Oster HR . University of Miami Division of Clinical Pharmacology therapeutic rounds: drug-induced hyperkalemia Am J Ther 1998 5: 125–132

    CAS  PubMed  Google Scholar 

  61. Friedman PA, Bushinsky DA . Diuretic effects on calcium metabolism Semin Nephrol 1999 19: 551–556

    CAS  PubMed  Google Scholar 

  62. Yendt ER, Cohanim M . Prevention of calcium stones with thiazides Kidney Int 1978 13: 397–409

    CAS  PubMed  Google Scholar 

  63. Stier CT, Itskovitz HD . Renal calcium metabolism and diuretics Annu Rev Pharmacol Toxicol 1986 26: 101–116

    PubMed  Google Scholar 

  64. Reyes AJ, Leary WP, van der Byl K . Responses of urinary chloride, sodium, potassium and magnesium excretions to the addition of captopril to a combination of furosemide and amiloride. In: Puschett JB, Greenberg A (eds) Diuretics IV: Chemistry, Pharmacology and Clinical Applications Elsevier Science: Amsterdam 1993 595–598

    Google Scholar 

  65. Costanzo L . Effects of diuretics on the distal convoluted tubular transport of calcium. In: Puschett JB, Greenberg A (eds) Diuretics: Chemistry, Pharmacology, and Clinical Applications Elsevier: New York 1984 169–173

    Google Scholar 

  66. al-Ghamdi SM, Cameron EC . Sutton RA. Magnesium deficiency: pathophysiologic and clinical overview Am J Kidney Dis 1994 24: 737–752

    CAS  PubMed  Google Scholar 

  67. Reyes AJ, Leary WP . Diuretics and magnesium Magnes Bull 1984 6: 87–99

    CAS  Google Scholar 

  68. Reyes AJ, Leary WP . Magnesiuretic potency of twenty-seven oral formulations of diuretics. Report on a study series in progress Am J Hypertens 2000 4: 113A–114A (abstract)

    Google Scholar 

  69. Reyes AJ, Leary WP . Cardiovascular toxicity of diuretics related to magnesium depletion Human Toxicol 1984 3: 351–372

    CAS  Google Scholar 

  70. Reyes AJ . Interactions between magnesium and drugs in congestive heart failure Magnes Bull 1987 9: 93–109

    CAS  Google Scholar 

  71. Ceremuzynski L, Gebalska J, Wolk R, Makowska E . Hypomagnesemia in heart failure with ventricular arrhythmias. Beneficial effects of magnesium supplementation J Intern Med 2000 247: 78–86

    CAS  PubMed  Google Scholar 

  72. Vannini SD et al. Permanently reduced plasma ionized magnesium among renal transplant recipients on cyclosporine Transpl Int 1999 12: 244–249

    CAS  PubMed  Google Scholar 

  73. Dyckner T, Wester PO . Ventricular extrasystoles and intracellular electrolytes before and after potassium and magnesium infusions inpatients on diuretic treatment Am Heart J 1979 97: 12–18

    CAS  PubMed  Google Scholar 

  74. Sowers JR . The impact of diuretics on potassium and glucose J Cardiovasc Pharmacol 1989 36: 111–117

    Google Scholar 

  75. Furman BL . Impairment of glucose tolerance produced by diuretics and other drugs Pharmacol Ther 1981 12: 613–649

    CAS  PubMed  Google Scholar 

  76. Levine SN, Sanson TH . Treatment of hyperglycaemic hyperosmolar non-ketotic syndrome Drugs 1989 38: 462–472

    CAS  PubMed  Google Scholar 

  77. Fang J, Alderman MH . Serum uric acid and cardiovascular mortality. The NHANES I epidemiologic follow-up study, 1971–1992 JAMA 2000 283: 2404–2410

    CAS  PubMed  Google Scholar 

  78. Anker S et al. A simple predictor of impaired prognosis in chronic heart failure: uric acid J Am Coll Cardiol 1998 31: 197C (abstract)

    Google Scholar 

  79. Bettencourt P et al. Predictors of prognosis inpatients with stable mild to moderate heart failure J Card Fail 2000 6: 306–313

    CAS  PubMed  Google Scholar 

  80. Johnson MW, Mitch WE . The risks of asymptomatic hyperuricaemia and the use of uricosuric diuretics Drugs 1981 21: 220–225

    CAS  PubMed  Google Scholar 

  81. Mazzali M et al. An elevated serum uric acid (UA) causes kidney damage: evidence for a crystal independent mechanism Am J Hypertens 2000 13: 36A (abstract)

    Google Scholar 

  82. Osaki S et al. Impairment of urate excretion is an important mechanism for hyperuricemia inpatients with heart failure J Card Fail 1999 5 (Suppl 2): 60 (abstract)

    Google Scholar 

  83. Tykarski A . Evaluation of renal handling of uric acid in essential hypertension: hyperuricemia related to decreased urate secretion Nephron 1991 59: 364–368

    CAS  PubMed  Google Scholar 

  84. Reyes AJ . Renal excretory profiles of loop diuretics—consequences for therapeutic application J Cardiovasc Pharmacol 1993 22 (Suppl 3): S11–S23

    Google Scholar 

  85. Carlsen JE, Kober L, Torp-Pedersen C, Johansen C . Relations between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects Br Med J 1990 300: 975–978

    CAS  Google Scholar 

  86. Frohlich ED . Ticrynafen: a new thiazide-like but uricosuric antihypertensive diuretic N Engl J Med 1979 301: 1378–1382

    CAS  PubMed  Google Scholar 

  87. Reyes AJ, Leary WP, van der Byl K . Lack of effect of cicletanine on uric acid Am J Hypertens 2000 13: 114A (abstract)

    Google Scholar 

  88. Tarrade T et al. Efficacité antihypertensive et tolérance du cicletanine. Résultats obtenues en monothérapie sur une large population Arch Mal Coeur 1989 82: 91–97

    PubMed  Google Scholar 

  89. Leary WP, Reyes AJ . Angiotensin I converting enzyme inhibitors and the renal excretion of urate Cardiovasc Drugs Ther 1987 1: 29–38

    CAS  PubMed  Google Scholar 

  90. Reyes AJ . Angiotensin-converting enzyme inhibitors in the clinical setting of congestive heart failure Am J Cardiol 1995 75: 50F–55F

    CAS  PubMed  Google Scholar 

  91. Lant AF, McNabb RW, Noormohamed FH . Kinetic and metabolic aspects of enalapril action J Hypertens 1984 2 (Suppl 2): 37–42

    Google Scholar 

  92. Leary WP, Reyes AJ, van der Byl K, Acosta-Barrios TN . Effects of captopril, hydrochlorothiazide and their combination on timed urinary excretion of water and electrolytes J Cardiovasc Pharmacol 1985 7 (Suppl 1): S56–S62

    Google Scholar 

  93. Labeeuw M et al. Influence de l'administration aiguë du ramipril sur l'excrétion d'acide urique Arch Mal Coeur 1987 80: 870–874

    CAS  PubMed  Google Scholar 

  94. Reyes AJ . Uric acid in cardiovascular diseases and the uricosuric and hypouricaemic actions of angio-tensin-converting enzyme inhibitors In: Reyes AJ, Maranhão MFC (eds) Cardiovascular pharmacotherapy. Proceedings of the 9th International Congresson Cardiovascular Pharmacotherapy Monduzzi: Bologna 2000 pp 235–240

    Google Scholar 

  95. Nakashima M, Uematsu T, Kosuge K, Kanamuro M . Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects Eur J Clin Pharmacol 1992 42: 333–335

    CAS  PubMed  Google Scholar 

  96. Soffer BA et al. Effects of losartan on a background of hydrochlorothiazide inpatients with hypertension Hypertension 1995 26: 112–117

    CAS  PubMed  Google Scholar 

  97. Kochar M et al. Matrix study of irbesartan with hydrochlorothiazide in mild-to-moderate hypertension Am J Hypertens 1999 12: 797–805

    CAS  PubMed  Google Scholar 

  98. Greenberg A . Diuretic complications Am J Med Sci 2000 319: 10–24

    CAS  PubMed  Google Scholar 

  99. Puschett JB, Lupinacci Jordan L . Mode of action of torasemide in man Prog Pharmacol Clin Pharmacol 1990 8/1: 3–13

    Google Scholar 

  100. Reyes AJ, Leary WP, Espinas RD, van der Byl K . The loop diuretic torasemide does not act on the proximal tubule of the nephron Eur Heart J 2000 21: 440 (abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Reyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, A. Diuretics in the treatment of patients who present congestive heart failure and hypertension. J Hum Hypertens 16 (Suppl 1), S104–S113 (2002). https://doi.org/10.1038/sj.jhh.1001354

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001354

Keywords

This article is cited by

Search

Quick links