Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The hormone-sensitive lipase C–60G promoter polymorphism is associated with increased waist circumference in normal-weight subjects

Abstract

Objective:

Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from triglyceride stores in adipocytes. The aim of the present study was to investigate the role of the HSL gene promoter variant C-60G, a polymorphism which previously has been associated with reduced promoter activity in vitro, in obesity and type 2 diabetes.

Design:

We genotyped two materials consisting of obese subjects and non-obese controls, one material with offspring-parents trios, where the offspring was abdominally obese and one material with trios, where the offspring had type 2 diabetes or impaired glucose homeostasis. HSL promoter containing the HSL C-60G G-allele was generated and tested against a construct with the C-allele in HeLa cells and primary rat adipocytes. HSL mRNA levels were quantified in subcutaneous and visceral fat from 33 obese subjects.

Results:

We found that the common C-allele was associated with increased waist circumference and WHR in lean controls, but there was no difference in genotype frequency between obese and non-obese subjects. There was a significant increased transmission of C-alleles to the abdominally obese offspring but no increased transmission of C-alleles was observed to offspring with impaired glucose homeostasis. The G-allele showed reduced transcription in HeLa cells and primary rat adipocytes. HSL mRNA levels were significantly higher in subcutaneous compared to visceral fat from obese subjects.

Conclusion:

The HSL C-60G polymorphism is associated with increased waist circumference in non-obese subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Stralfors P, Belfrage P . Phosphorylation of hormone-sensitive lipase by cyclic AMP-dependent protein kinase. J Biol Chem 1983; 258: 15146–15152.

    CAS  PubMed  Google Scholar 

  2. Stralfors P, Bjorgell P, Belfrage P . Hormonal regulation of hormone-sensitive lipase in intact adipocytes: identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Proc Natl Acad Sci USA 1984; 81: 3317–3321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989; 84: 205–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Campbell PJ, Carlson M, Nurjhan N . Fat metabolism in human obesity. Am J Physiol 1994; 266: E600–E605.

    CAS  PubMed  Google Scholar 

  5. Groop LC, Bonadonna RC, Simonson DC, Petrides AS, Shank M, DeFronzo RA . Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity. Am J Physiol 1992; 263: E79–84.

    CAS  PubMed  Google Scholar 

  6. Reynisdottir S, Ellerfeldt K, Wahrenberg H, Lithell H, Arner P . Multiple lipolysis defects in the insulin resistance (metabolic) syndrome. J Clin Invest 1994; 93: 2590–2599.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kaartinen JM, LaNoue KF, Martin LF, Vikman HL, Ohisalo JJ . Beta-adrenergic responsiveness of adenylate cyclase in human adipocyte plasma membranes in obesity and after massive weight reduction. Metabolism 1995; 44: 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  8. Connacher AA, Bennet WM, Jung RT, Bier DM, Smith CC, Scrimgeour CM et al. Effect of adrenaline infusion on fatty acid and glucose turnover in lean and obese human subjects in the post-absorptive and fed states. Clin Sci (London) 1991; 81: 635–644.

    Article  CAS  Google Scholar 

  9. Large V, Reynisdottir S, Langin D, Fredby K, Klannemark M, Holm C et al. Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J Lipid Res 1999; 40: 2059–2066.

    CAS  PubMed  Google Scholar 

  10. Hellstrom L, Langin D, Reynisdottir S, Dauzats M, Arner P . Adipocyte lipolysis in normal weight subjects with obesity among first-degree relatives. Diabetologia 1996; 39: 921–928.

    Article  CAS  PubMed  Google Scholar 

  11. Lofgren P, Hoffstedt J, Ryden M, Thorne A, Holm C, Wahrenberg H et al. Major gender differences in the lipolytic capacity of abdominal subcutaneous fat cells in obesity observed before and after long-term weight reduction. J Clin Endocrinol Metab 2002; 87: 764–771.

    Article  CAS  PubMed  Google Scholar 

  12. Arner P . Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med 1995; 27: 435–438.

    Article  CAS  PubMed  Google Scholar 

  13. Reynisdottir S, Dauzats M, Thorne A, Langin D . Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J Clin Endocrinol Metab 1997; 82: 4162–4166.

    CAS  PubMed  Google Scholar 

  14. Lefebvre AM, Laville M, Vega N, Riou JP, van Gaal L, Auwex J et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998; 47: 98–103.

    Article  CAS  PubMed  Google Scholar 

  15. Holm C, Osterlund T, Laurell H, Contreras JA . Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 2000; 20: 365–393.

    Article  CAS  PubMed  Google Scholar 

  16. Holm C, Kirchgessner TG, Svenson KL, Fredrikson G, Nilsson S, Miller CG et al. Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science 1988; 241: 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  17. Levitt RC, Liu Z, Nouri N, Meyers DA, Brandriff B, Mohrenweiser HM . Mapping of the gene for hormone sensitive lipase (LIPE) to chromosome 19q13.1 → q13.2. Cytogenet Cell Genet 1995; 69: 211–214.

    Article  CAS  PubMed  Google Scholar 

  18. Schonk D, van Dijk P, Riegmann P, Trapman J, Holm C, Willcocks TC et al. Assignment of seven genes to distinct intervals on the midportion of human chromosome 19q surrounding the myotonic dystrophy gene region. Cytogenet Cell Genet 1990; 54: 15–19.

    Article  CAS  PubMed  Google Scholar 

  19. Klannemark M, Orho M, Langin D, Laurell H, Holm C, Reynisdottir S et al. The putative role of the hormone-sensitive lipase gene in the pathogenesis of Type II diabetes mellitus and abdominal obesity. Diabetologia 1998; 41: 1516–1522.

    Article  CAS  PubMed  Google Scholar 

  20. Magre J, Laurell H, Fizames C, Antoine PJ, Dib C, Vigouroux C et al. Human hormone-sensitive lipase: genetic mapping, identification of a new dinucleotide repeat, and association with obesity and NIDDM. Diabetes 1998; 47: 284–286.

    Article  CAS  PubMed  Google Scholar 

  21. Qi L, Shen H, Larson I, Barnard JR, Shaefer EJ, Ordovas JM . Genetic variation at the hormone sensitive lipase: gender-specific association with plasma lipid and glucose concentrations. Clin Genet 2004; 65: 93–100.

    Article  CAS  PubMed  Google Scholar 

  22. Lavebratt C, Ryden M, Schalling M, Sengul S, Ahlberg S, Hoffstedt J . The hormone-sensitive lipase i6 gene polymorphism and body fat accumulation. Eur J Clin Invest 2002; 32: 938–942.

    Article  CAS  PubMed  Google Scholar 

  23. Nieters A, Becker N, Linseisen J . Polymorphisms in candidate obesity genes and their interaction with dietary intake of n-6 polyunsaturated fatty acids affect obesity risk in a sub-sample of the EPIC-Heidelberg cohort. Eur J Nutr 2002; 41: 210–221.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffstedt J, Arner P, Schalling M, Pedersen NL, Sengul S, Ahlberg S et al. A common hormone-sensitive lipase i6 gene polymorphism is associated with decreased human adipocyte lipolytic function. Diabetes 2001; 50: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  25. Talmud PJ, Palmen J, Walker M . Identification of genetic variation in the human hormone-sensitive lipase gene and 5′ sequences: homology of 5′ sequences with mouse promoter and identification of potential regulatory elements. Biochem Biophys Res Commun 1998; 252: 661–668.

    Article  CAS  PubMed  Google Scholar 

  26. Talmud PJ, Palmen J, Luan J, Flavell D, Byrne CD, Waterworth DM et al. Variation in the promoter of the human hormone sensitive lipase gene shows gender specific effects on insulin and lipid levels: results from the Ely study. Biochim Biophys Acta 2001; 1537: 239–244.

    Article  CAS  PubMed  Google Scholar 

  27. Carlsson E, Fredriksson J, Groop L, Ridderstrale M . Variation in the calpain-10 gene is associated with elevated triglyceride levels and reduced adipose tissue messenger ribonucleic acid expression in obese Swedish subjects. J Clin Endocrinol Metab 2004; 89: 3601–3605.

    Article  CAS  PubMed  Google Scholar 

  28. Large V, Hellstrom L, Reynisdottir S, Lonnqvist F, Eriksson P, Lonnfelt L et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest 1997; 100: 3005–3013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Alberti KG, Zimmet PZ . Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539–553.

    Article  CAS  PubMed  Google Scholar 

  30. Groop L, Forsblom C, Lehtovirta M, Tuomi T, Karanko S, Nissen M et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes 1996; 45: 1585–1593.

    Article  CAS  PubMed  Google Scholar 

  31. Ridderstrale M, Carlsson E, Klannemark M, Cederberg A, Kosters C, Tornqvist H et al. FOXC2 mRNA Expression and a 5′ untranslated region polymorphism of the gene are associated with insulin resistance. Diabetes 2002; 51: 3554–3560.

    Article  CAS  PubMed  Google Scholar 

  32. Rodbell M . Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 1964; 239: 375–380.

    CAS  PubMed  Google Scholar 

  33. Quon MJ, Zarnowski MJ, Guerre-Millo M, de la Luz Sierra M, Taylor SI, Cushman SW . Transfection of DNA into isolated rat adipose cells by electroporation: evaluation of promoter activity in transfected adipose cells which are highly responsive to insulin after one day in culture. Biochem Biophys Res Commun 1993; 194: 338–346.

    Article  CAS  PubMed  Google Scholar 

  34. Vandenplas S, Wiid I, Grobler-Rabie A, Brebner K, Ricketts M, Wallis G et al. Blot hybridisation analysis of genomic DNA. J Med Genet 1984; 21: 164–172.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pihlajamaki J, Valve R, Karjalainen L, Karhapaa P, Vauhkonen I, Laakso M . The hormone sensitive lipase gene in familial combined hyperlipidemia and insulin resistance. Eur J Clin Invest 2001; 31: 302–308.

    Article  CAS  PubMed  Google Scholar 

  36. Talmud PJ, Palmen J, Nicaud V, Tiret L . Association of the hormone sensitive lipase −60C >G variant with fasting insulin levels in healthy young men. Nutr Metab Cardiovasc Dis 2002; 12: 173–177.

    CAS  PubMed  Google Scholar 

  37. Garenc C, Perusse L, Chagnon YC, Rankinen T, Gagnon J, Borecki IB et al. The hormone-sensitive lipase gene and body composition: the HERITAGE Family Study. Int J Obes Relat Metab Disord 2002; 26: 220–227.

    Article  CAS  PubMed  Google Scholar 

  38. Large V, Arner P, Reynisdottir S, Grober J, Van Harmelen V, Holm C et al. Hormone-sensitive lipase expression and activity in relation to lipolysis in human fat cells. J Lipid Res 1998; 39: 1688–1695.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was funded by the Crafoord Foundation, Malmö University Hospital Foundation, the Albert Påhlsson Foundation, the Swedish Research Council, the Diabetes Association in Malmö, the Juvenile Diabetes-Wallenberg Foundation, the Lundberg Foundation, EC-GIFT, the Novo Nordisk Foundation, Region Skåne, ALF, the Magnus Bergvall Foundation, the Fredrik and Ingrid Thurings Foundation and the Borgströms Foundation. We are greatly indebted to the study subjects for their participation. We thank Drs. Henrik Laurell and Dominique Langin, INSERM, Toulouse, for the kind gift of the pGL3-HSL plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Carlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlsson, E., Johansson, L., Ström, K. et al. The hormone-sensitive lipase C–60G promoter polymorphism is associated with increased waist circumference in normal-weight subjects. Int J Obes 30, 1442–1448 (2006). https://doi.org/10.1038/sj.ijo.0803299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803299

Keywords

This article is cited by

Search

Quick links