Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

The association between vitamin D receptor polymorphisms and tissue-specific insulin resistance in human obesity

Abstract

Background/objectives

To investigate (1) the association of four VDR polymorphisms (TaqI/rs731236, ApaI/rs7975232, FokI/rs10735810, and Bsml/rs1544410) with markers of adiposity and tissue-specific insulin resistance at baseline, after weight loss and weight maintenance; (2) the effect of the VDR polymorphisms in the SAT transcriptome in overweight/obese Caucasians of the DiOGenes cohort.

Methods

We included 553 adult obese individuals (mean BMI 34.8 kg/m2), men (n = 197) and women (n = 356) at baseline, following an 8-week weight loss intervention and 26 weeks weight maintenance. Genotyping was performed using an Illumina 660W-Quad SNP chip on the Illumina iScan Genotyping System. Tissue-specific IR was determined using Hepatic Insulin Resistance Index (HIRI), Muscle Insulin Sensitivity Index (MISI), and Adipose Tissue Insulin Resistance Index (Adipo-IR). Expression quantitative trait loci (eQTL) analysis was performed to determine the effect of SNPs on SAT gene expression.

Results

None of the VDR polymorphisms were associated with HIRI or MISI. Interestingly, carriers of the G allele of VDR FokI showed higher Adipo-IR (GG + GA 7.8 ± 0.4 vs. AA 5.6 ± 0.5, P = 0.010) and higher systemic FFA (GG + GA: 637.8 ± 13.4 vs. AA: 547.9 ± 24.7 µmol/L, P = 0.011), even after adjustment with age, sex, center, and FM. However, eQTL analysis showed minor to no effect of these genotypes on the transcriptional level in SAT. Also, VDR polymorphisms were not related to changes in body weight and IR as result of dietary intervention (P > 0.05 for all parameters).

Conclusions

The VDR Fokl variant is associated with elevated circulating FFA and Adipo-IR at baseline. Nevertheless, minor to no effect of VDR SNPs on the transcriptional level in SAT, indicating that putative mechanisms of action remain to be determined. Finally, VDR SNPs did not affect dietary intervention outcome in the present cohort.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The VDR gene on chromosome 12 and LD analysis.

Similar content being viewed by others

References

  1. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.

    Article  CAS  PubMed  Google Scholar 

  2. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metabol. 2011;96:1654–63.

    Article  CAS  Google Scholar 

  3. Albuquerque D, Nóbrega C, Manco L, Padez C. The contribution of genetics and environment to obesity. British Med Bull. 2017;123:159–73.

    Article  Google Scholar 

  4. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    Article  CAS  PubMed  Google Scholar 

  5. Jonas MI, Kuryłowicz A, Bartoszewicz Z, Lisik W, Jonas M, Kozniewski K, et al. Vitamin D receptor gene expression in adipose tissue of obese individuals is regulated by miRNA and correlates with the pro-inflammatory cytokine level. Int J Mol Sci. 2019;20:5272.

    Article  CAS  PubMed Central  Google Scholar 

  6. Wong KE, Kong J, Zhang W, et al. Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem. 2011;286:33804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pramono A, Jocken JWE, Essers YPG, Goossens GH, Blaak EE. Vitamin D and tissue-specific insulin sensitivity in humans with overweight/obesity. J Clin Endocrinol Metab. 2019;104:49–56.

    Article  PubMed  Google Scholar 

  8. van Etten E, Verlinden L, Giulietti A, Ramos‐Lopez E, Branisteanu DD, Ferreira GB, et al. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. Eur J Immunol. 2007;37:395–405.

    Article  PubMed  Google Scholar 

  9. Al-Daghri NM, Guerini FR, Al-Attas OS, Alokail MS, Alkharfy KM, Draz HM, et al. Vitamin D receptor gene polymorphisms are associated with obesity and inflammosome activity. PLOS One. 2014;9:e102141.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vasilopoulos Y, Sarafidou T, Kotsa K, Papadimitriou M, Goutzelas Y, Stamatis C, et al. VDR TaqI is associated with obesity in the Greek population. Gene. 2013;512:237–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ochs-Balcom HM, Chennamaneni R, Millen AE, Shields PG, Marian C, Trevisan M, et al. Vitamin D receptor gene polymorphisms are associated with adiposity phenotypes. Am J Clin Nutr. 2011;93:5–10.

    Article  CAS  PubMed  Google Scholar 

  12. Khan RJ, Riestra P, Gebreab SY, Wilson JG, Gaye A, Xu R, et al. Vitamin D receptor gene polymorphisms are associated with abdominal visceral adipose tissue volume and serum adipokine concentrations but not with body mass index or waist circumference in African Americans: The Jackson Heart Study–3. The Journal of nutrition. 2016;146:1476–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maria CR, Carrillo-Avila JA, Jacqueline SR, Emilio GJ, Sofia V, Javier M, et al. Genetic association analysis of vitamin D receptor gene polymorphisms and obesity-related phenotypes. Gene. 2018;640:51–6.

    Article  CAS  Google Scholar 

  14. Han FF, Lv YL, Gong LL, Liu H, Wan Z-R, Liu L-H. VDR Gene variation and insulin resistance related diseases. Lipids Health Dis. 2017;16:1–12.

    Article  CAS  Google Scholar 

  15. Mook-Kanamori DO, Geelhoed JM, Steegers EA, Witteman JC, Hofman A, Moll HA, et al. Insulin gene variable number of tandem repeats is not associated with weight from fetal life until infancy: the Generation R Study. Eur J Endocrinol. 2007;157:741–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wehr E, Trummer O, Giuliani A, Gruber H-J, Pieber TR, Obermayer-Pietsch B. Vitamin D-associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic ovary syndrome. Eur J Endocrinol. 2011;164:741–9.

    Article  CAS  PubMed  Google Scholar 

  17. Angel B, Lera L, Márquez C, Albala C. The association of VDR polymorphisms and type 2 diabetes in older people living in community in Santiago de Chile. Nutr Diabetes. 2018;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jain R, von Hurst PR, Stonehouse W, Love DR, Higgins CM, Coad J. Association of vitamin D receptor gene polymorphisms with insulin resistance and response to vitamin D. Metabolism. 2012;61:293–301.

    Article  CAS  PubMed  Google Scholar 

  19. Al-Daghri NM, Mohammed AK, Al-Attas OS, Ansari MGA, Wani K, Hussain SD, et al. Vitamin D receptor gene polymorphisms modify cardiometabolic response to vitamin D supplementation in T2DM patients. Sci Rep. 2017;7:8280.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Larsen TM, Dalskov S, van Baak M, Jebb S, Kafatos A, Pfeiffer A, et al. The diet, obesity and genes (Diogenes) dietary study in eight European countries—a comprehensive design for long-term intervention. Obes Rev. 2010;11:76–91.

    Article  CAS  PubMed  Google Scholar 

  21. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30:89–94.

    Article  CAS  PubMed  Google Scholar 

  22. Søndergaard E, Espinosa De Ycaza AE, Morgan-Bathke M, Jensen MD. How to measure adipose tissue insulin sensitivity. J Clin Endocrinol Metab. 2017;102:1193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Viguerie N, Montastier E, Maoret JJ, Roussel B, Combes M, Valle C, et al. Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation. PLoS Genet. 2012;8:e1002959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLOS Computat Biol. 2013;9:e1003118.

    Article  CAS  Google Scholar 

  25. Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–9.

    Article  CAS  PubMed  Google Scholar 

  26. Horita N, Kaneko T. Genetic model selection for a case–control study and a meta-analysis. Meta Gene. 2015;5:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet. 2009;10:184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vukić M, Neme A, Seuter S, Saksa N, de Mello VDF, Nurmi T, et al. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. PLoS ONE. 2015;10:e0124339.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maruyama R, Aoki F, Toyota M, Sasaki Y, Akashi H, Mita H, et al. Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation. Cancer Res. 2006;66:4574–83.

    Article  CAS  PubMed  Google Scholar 

  30. Narvaez CJ, Simmons KM, Brunton J, Salinero A, Chittur SV, Welsh JE. Induction of STEAP4 correlates with 1,25‐dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J Cell Physio. 2013;228:2024–36.

    Article  CAS  Google Scholar 

  31. Ryynänen J, Neme A, Tuomainen TP, et al. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res. 2014;58:2036–45.

    Article  PubMed  Google Scholar 

  32. Nimitphong H, Holick MF, Fried SK, Lee MJ. 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 promote the differentiation of human subcutaneous preadipocytes. PLOS One. 2012;7:e52171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larrick BM, Kim KH, Donkin SS, Teegarden D. 1,25-Dihydroxyvitamin D regulates lipid metabolism and glucose utilization in differentiated 3T3-L1 adipocytes. Nutr Res. 2018;58:72–83.

    Article  CAS  PubMed  Google Scholar 

  34. Carlberg C, Seuter S, de Mello VD, et al. Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. PLOS ONE. 2013;8:e71042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marcotorchino J, Gouranton E, Romier B, Tourniaire F, Astier J, Malezet C, et al. Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol Nutr Food Res. 2012;56:1771–82.

    Article  CAS  PubMed  Google Scholar 

  36. Chang E, Kim Y. Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes. Nutrition. 2016;32:702–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sabir MS, Khan Z, Hu C, Galligan MA, Dussik CM, Mallick S, et al. SIRT1 enzymatically potentiates 1,25-dihydroxyvitamin D3 signaling via vitamin D receptor deacetylation. J Steroid Biochem Mol Biol. 2017;172:117–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ding C, Wilding JP, Bing C. 1,25-dihydroxyvitamin D3 protects against macrophage-induced activation of NFκB and MAPK signalling and chemokine release in human adipocytes. PLoS ONE. 2013;8:e61707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moreno-Santos I, Castellano-Castillo D, Lara MF, Fernandez-Garcia JC, Tinahones FJ, Macias-Gonzalez M. IGFBP-3 interacts with the vitamin D receptor in insulin signaling associated with obesity in visceral adipose tissue. Int J Mol Sci. 2017;18:2349.

  40. Issa LL, Leong GM, Barry JB, Sutherland RL, Eisman JA. Glucocorticoid receptor-interacting protein-1 and receptor-associated coactivator-3 differentially interact with the vitamin D receptor (VDR) and regulate VDR-retinoid X receptor transcriptional cross-talk. Endocrinology. 2001;142:1606–15.

    Article  CAS  PubMed  Google Scholar 

  41. Asano L, Watanabe M, Ryoden Y, Usuda K, Yamaguchi T, Khambu B, et al. Vitamin D metabolite, 25-hydroxyvitamin D, regulates lipid metabolism by inducing degradation of SREBP/SCAP. Cell Chem Biol. 2017;24:207–17.

    Article  CAS  PubMed  Google Scholar 

  42. Bandera Merchan B, Tinahones FJ, Macías-González M. Commonalities in the association between PPARG and vitamin D related with obesity and carcinogenesis. PPAR Res. 2016;2016:2308249.

  43. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2013. http://www.R-project.org/.

  44. Vimaleswaran KS, Cavadino A, Berry DJ, Genetic Investigation of Anthropometric Traits C, Whittaker JC, Power C, et al. Genetic association analysis of vitamin D pathway with obesity traits. Int J Obes. 2013;37:1399–406.

    Article  CAS  Google Scholar 

  45. Walsh S, Ludlow AT, Metter EJ, Ferrucci L, Roth SM. Replication study of the vitamin D receptor (VDR) genotype association with skeletal muscle traits and sarcopenia. Aging Clin Exp Res. 2016;28:435–42.

    Article  PubMed  Google Scholar 

  46. Dorjgochoo T, Shi J, Gao Y-T, Long J, Delahanty R, Xiang Y-B, et al. Genetic variants in vitamin D metabolism-related genes and body mass index: analysis of genome-wide scan data of approximately 7000 Chinese women. Int J Obes. 2012;36:1252.

    Article  CAS  Google Scholar 

  47. Xia Z, Hu Y, Han Z, Gao Y, Bai J, He Y, et al. Association of vitamin D receptor gene polymorphisms with diabetic dyslipidemia in the elderly male population in North China. Clin Interventions Aging. 2017;12:1673–9.

    Article  CAS  Google Scholar 

  48. Jia J, Tang Y, Shen C, Zhang N, Ding H, Zhan Y. Vitamin D receptor polymorphism rs2228570 is significantly associated with risk of dyslipidemia and serum LDL levels in Chinese Han population. Lipids Health Dis. 2018;17:193.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Keane JT, Elangovan H, Stokes RA, Gunton JE. Vitamin D and the liver-correlation or cause? Nutrients. 2018;10:496.

    Article  PubMed Central  Google Scholar 

  50. Whitfield GK, Remus LS, Jurutka PW, Zitzer H, Oza AK, Dang HT, et al. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol. 2001;177:145–59.

    Article  CAS  PubMed  Google Scholar 

  51. Colin EM, Weel AE, Uitterlinden AG, Buurman CJ, Birkenhager JC, Pols HA, et al. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1, 25-dihydroxyvitamin D3. Clin Endocrinol. 2000;52:211–6.

    Article  CAS  Google Scholar 

  52. Alimirah F, Peng X, Murillo G, Mehta RG. Functional significance of vitamin D receptor FokI polymorphism in human breast cancer cells. PLOS ONE. 2011;6:e16024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

First author is supported by Indonesia Endowment Fund for Education (LPDP) scholarship. This study was supported by internal resources from Maastricht University. The funders had no role in the study design, data analysis, interpretation, and the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

WHMS and AA designed the DiOGenes clinical study. AP, JWJ, and EEB designed the study. AP performed data analyses and wrote the manuscript. JWEJ and MEA supervised adipose tissue transcriptome data analysis. All authors contributed to revising the article critically and gave their final approval of the version to be published. EEB is the guarantor of this study.

Corresponding author

Correspondence to E. E. Blaak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramono, A., Jocken, J.W.E., Adriaens, M.E. et al. The association between vitamin D receptor polymorphisms and tissue-specific insulin resistance in human obesity. Int J Obes 45, 818–827 (2021). https://doi.org/10.1038/s41366-021-00744-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00744-2

This article is cited by

Search

Quick links