Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of transient correction of increased adrenocortical activity in hypothalamo-damaged, hyperadipose female rats

Abstract

Objective:

To explore the effects of transient correction of enhanced corticoadrenal activity in monosodium L-glutamate (MSG)-damaged female rats on peripheral insulin sensitivity and in vitro retroperitoneal (RP) adipocyte function.

Designs:

A dose of 4 mg/g body weight (BW) of MSG or vehicle (CTR) was i.p. injected, once every 2 days, between days 2 and 10 of age, in female rats. Intact and 21 day-operated (sham or adrenal enucleation (AE)) rats from both (CTR and MSG) groups were used for experimentation on day 120 of age. Circulating levels of several hormones, in basal and after i.v. high-glucose load conditions, and RP adiposity morphology and function were then evaluated.

Results:

MSG rats developed increased adrenocortical function, hyperadiposity, hyperleptinemia, hyperinsulinemia and decreased peripheral insulin sensitivity. These characteristics were fully reversed after transient correction of corticoadrenal hyperactivity induced by AE. In addition, in vitro experimentation with isolated RP adipocytes indicated that cells from intact MSG animals displayed decreased sensitivity to insulin and dexamethasone stimulation of leptin secretion. Interestingly, adipocyte dysfunction in MSG rats was fully abrogated after AE-induced transient correction of insulinemia, leptinemia and adrenocortical activity. Importantly, the reversion of these metabolic abnormalities, induced by AE for 21 days, in MSG animals did occur, despite no significant changes in BW values.

Conclusion:

Our results support that the changes in adipocyte characteristics and peripheral insulin resistance, developed in this pseudo-obese female rat model, are mainly due to increased glucocorticoid production. Importantly, appropriate correction of the enhanced adrenocortical activity fully reversed these abnormal functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nemeroff CB, Grant LD, Bissette G, Erin GN, Harrell LE, Prange AJ . Growth, endocrinological and behavioral deficits after monosodium L-glutamate in the neonatal rat: possible involvement of arcuate dopamine neuron damage. Psychoneuroendocrinology 1977; 2: 179–196.

    Article  CAS  PubMed  Google Scholar 

  2. Holzwarth-McBride MA, Sladek Jr JR, Knigge KM . Monosodium glutamate induced lesions of the arcuate nucleus. II. Fluorescence histochemistry of catecholamines. Anat Rec 1986; 186: 197–205.

    Article  Google Scholar 

  3. Krieger DT, Liotta AS, Nicholsen G, Kizer JS . Brain ACTH and endorphin reduced in rats with monosodium glutamate-induced arcuate nuclear lesions. Nature 1979; 278: 562–563.

    Article  CAS  PubMed  Google Scholar 

  4. Burde RM, Schainker B, Kayes J . Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats. Nature 1971; 233: 58–60.

    Article  CAS  PubMed  Google Scholar 

  5. Redding TW, Schally AV, Arimura A, Wakabayashi I . Effect of monosodium glutamate on some endocrine functions. Neuroendocrinology 1971; 8: 245–255.

    Article  CAS  PubMed  Google Scholar 

  6. Olney JW, Sharpe LG . Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 1969; 166: 386–388.

    Article  CAS  PubMed  Google Scholar 

  7. Badger TM, Millard WJ, Martin JB, Rosenblum PM, Levenson SE . Hypothalamic–pituitary function in adult rats treated neonatally with monosodium glutamate. Endocrinology 1982; 111: 2031–2038.

    Article  CAS  PubMed  Google Scholar 

  8. Larsen PJ, Mikkelsen JD, Jessop D, Lightman SL, Chowdrey HS . Neonatal monosodium glutamate treatment alters both the activity and the sensitivity of the rat hypothalamo–pituitary–adrenocortical axis. J Endocrinol 1994; 141: 497–503.

    Article  CAS  PubMed  Google Scholar 

  9. Skultetyova I, Kiss A, Jezova D . Neurotoxic lesions induced by monosodium glutamate result in increased adenopituitary proopiomelanocortin gene expression and decreased corticosterone clearance in rats. Neuroendocrinology 1998; 67: 412–420.

    Article  CAS  PubMed  Google Scholar 

  10. Macho L, Jezova D, Zorad S, Fickova M . Postnatal monosodium glutamate treatment results in attenuation of corticosterone metabolic rate in adult rats. Endocr Regul 1999; 33: 61–67.

    CAS  PubMed  Google Scholar 

  11. Dolnikoff MS, Kater CE, Egami M, de Andrade IS, Marmo MR . Neonatal treatment with monosodium glutamate increases plasma corticosterone in the rat. Neuroendocrinology 1988; 48: 645–649.

    Article  CAS  PubMed  Google Scholar 

  12. Magarinos AM, Estivariz F, Morado MI, De Nicola AF . Regulation of the central nervous system–pituitary–adrenal axis in rats after neonatal treatment with monosodium glutamate. Neuroendocrinology 1988; 48: 105–111.

    Article  CAS  PubMed  Google Scholar 

  13. Morris MJ, Tortelli CF, Filippis A, Proietto J . Reduced BAT function as a mechanism for obesity in the hypophagic, neuropeptide Y deficient monosodium glutamate-treated rat. Regul Pept 1998; 75–76: 441–447.

    Article  PubMed  Google Scholar 

  14. Hirata AE, Andrade IS, Vaskevicius P, Dolnikoff MS . Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz J Med Biol Res 1997; 30: 671–674.

    Article  CAS  PubMed  Google Scholar 

  15. Bliss EL, Ailion J, Zwanziger J . Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. J Pharmacol Exp Ther 1968; 164: 122–134.

    CAS  PubMed  Google Scholar 

  16. Palkovits M, Brownstein M, Kizer JS, Saavedra JM, Kopin IJ . Effect of stress on serotonin concentration and tryptophan hydroxylase activity of brain nuclei. Neuroendocrinology 1976; 22: 298–304.

    Article  CAS  PubMed  Google Scholar 

  17. Dawson R, Pelleymounter MA, Millard WJ, Liu S, Eppler B . Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage. Am J Physiol 1997; 273: E202–E206.

    CAS  PubMed  Google Scholar 

  18. Spinedi E, Gaillard RC . A regulatory loop between the hypothalamo–pituitary–adrenal (HPA) axis and circulating leptin: a physiological role of ACTH. Endocrinology 1998; 139: 4016–4020.

    Article  CAS  PubMed  Google Scholar 

  19. Hamann A, Matthaei S . Regulation of energy balance by leptin. Exp Clin Endocrinol Diabetes 1996; 104: 293–300.

    Article  CAS  PubMed  Google Scholar 

  20. Pralong FP, Roduit R, Waeber G, Castillo E, Mosimann F, Thorens B et al. Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland. Endocrinology 1998; 139: 4264–4268.

    Article  CAS  PubMed  Google Scholar 

  21. Perello M, Gaillard RC, Chisari A, Spinedi E . Adrenal enucleation in MSG-damaged hyperleptinemic male rats transiently restores adrenal sensitivity to leptin. Neuroendocrinology 2003; 78: 176–184.

    Article  CAS  PubMed  Google Scholar 

  22. Perello M, Moreno G, Camihort G, Luna G, Console G, Gaillard RC et al. Nature of changes in adrenocortical function in chronic hyperleptinemic female rats. Endocrine 2004; 24: 167–175.

    Article  CAS  PubMed  Google Scholar 

  23. Spinedi E, Johnston CA, Negro-Vilar A . Increased responsiveness of the hypothalamic–pituitary axis after neurotoxin-induced hypothalamic denervation. Endocrinology 1984; 115: 267–272.

    Article  CAS  PubMed  Google Scholar 

  24. Console GM, Jurado SB, Petruccelli M, Carino M, Calandra RS, Gómez Dumm CLA . Influence of photoinhibition on the morphology and function of pituitary lactotropes in male golden hamster. Neuroendocrinology 2002; 75: 316–325.

    Article  CAS  PubMed  Google Scholar 

  25. Piermaria J, Console G, Perelló M, Moreno G, Gaillard RC, Spinedi E . Impact of estradiol on parametrial adipose tissue function: evidence for establishment of a new set point of leptin sensitivity in control of energy metabolism in female rat. Endocrine 2003; 20: 239–246.

    Article  CAS  PubMed  Google Scholar 

  26. Widdup G, Bryson JM, Pawlak D, Phuyal JL, Denyer GS, Caterson ID . In vivo and in vitro suppression by leptin of glucose-stimulated insulin hypersecretion in high glucose-fed rats. Eur J Endocrinol 2000; 143: 431–437.

    Article  CAS  PubMed  Google Scholar 

  27. Hardie LJ, Guilhot N, Trayhurn P . Regulation of leptin production in cultured mature white adipocytes. Horm Metab Res 1996; 28: 685–689.

    Article  CAS  PubMed  Google Scholar 

  28. Spinedi E, Giacomini M, Jacquier MC, Gaillard RC . Changes in the hypothalamo–corticotrope axis after bilateral adrenalectomy: evidence for a median eminence site of glucocorticoid action. Neuroendocrinology 1991; 53: 160–170.

    Article  CAS  PubMed  Google Scholar 

  29. Giovambattista A, Chisari AN, Gaillard RC, Spinedi E . Food intake-induced leptin secretion modulates hypothalamo–pituitary–adrenal axis response and hypothalamic Ob–Rb expression to insulin administration. Neuroendocrinology 2000; 72: 341–349.

    Article  CAS  PubMed  Google Scholar 

  30. Perello M, Moreno G, Gaillard RC, Spinedi E . Glucocorticoid-dependency of increased adiposity in a model of hypothalamic obesity. Neuroendocrinol Lett 2004; 25: 119–126.

    CAS  PubMed  Google Scholar 

  31. Spinedi E, Negro-Vilar A . Arginine vasopressin and adrenocorticotropin release: correlation between binding characteristics and biological activity in anterior pituitary dispersed cells. Endocrinology 1984; 114: 2247–2251.

    Article  CAS  PubMed  Google Scholar 

  32. McElroy WD, Swanson CP (eds). Biostatistical Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1974.

    Google Scholar 

  33. Kaneko M, Hiroshige T, Shinsako J, Dallman MF . Diurnal changes in amplification of hormone rhythms in the adrenocortical system. Am J Physiol 1980; 239: R309–R316.

    CAS  PubMed  Google Scholar 

  34. Feldkircher KM, Mistry AM, Romsos DR . Adrenalectomy reverses pre-existing obesity in adult genetically obese (ob/ob) mice. Int J Obes Relat Metab Disord 1996; 20: 232–235.

    CAS  PubMed  Google Scholar 

  35. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS . Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999; 20: 68–100.

    CAS  PubMed  Google Scholar 

  36. Kersten S . Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2001; 2: 282–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gregoire FM, Smas CM, Sul HS . Understanding adipocyte differentiation. Physiol Rev 1998; 78: 783–809.

    Article  CAS  PubMed  Google Scholar 

  38. Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, Boss O, Pernin A, Chin WW et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest 1997; 100: 2858–2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Couillard C, Mauriege P, Imbeault P, Prud'homme D, Nadeau A, Tremblay A et al. Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia. Int J Obes Relat Metab Disord 2000; 24: 782–788.

    Article  CAS  PubMed  Google Scholar 

  40. Coimbra CC, Migliorini RH . Insulin-sensitive glucoreceptors in rat preoptic area that regulate FFA mobilization. Am J Physiol 1986; 251: E703–E706.

    CAS  PubMed  Google Scholar 

  41. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99: 2416–2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Norman D, Isidori AM, Frajese V, Caprio M, Chew SL, Grossman AB et al. ACTH and alpha-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central–peripheral melanocortin–leptin pathway. Mol Cell Endocrinol 2003; 200: 99–109.

    Article  CAS  PubMed  Google Scholar 

  43. Mueller E, Drori S, Aiyer A, Yie J, Sarraf P, Chen H et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. J Biol Chem 2002; 277: 41925–41930.

    Article  CAS  PubMed  Google Scholar 

  44. El-Chaar D, Gagnon A, Sorisky A . Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. Int J Obes Relat Metab Disord 2004; 28: 191–198.

    Article  CAS  PubMed  Google Scholar 

  45. Zorad S, Macho L, Jezova D, Fickova M . Partial characterization of insulin resistance in adipose tissue of monosodium glutamate-induced obese rats. Ann NY Acad Sci 1997; 827: 541–545.

    Article  CAS  PubMed  Google Scholar 

  46. Macho L, Fickova M, Jezova D, Zorad S . Late effects of postnatal administration of monosodium glutamate on insulin action in adult rats. Physiol Res 2000; 49: S79–S85.

    CAS  PubMed  Google Scholar 

  47. Yamakawa T, Tanaka S, Yamakawa Y, Kiuchi Y, Isoda F, Kawamoto S et al. Augmented production of tumor necrosis factor-alpha in obese mice. Clin Immunol Immunopathol 1995; 75: 51–56.

    Article  CAS  PubMed  Google Scholar 

  48. Hirata AE, Alvarez-Rojas F, Carvalheira JB, Carvalho CR, Dolnikoff MS, Abdalla Saad MJ . Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci 2003; 73: 1369–1381.

    Article  CAS  PubMed  Google Scholar 

  49. Carter-Su C, Okamoto K . Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes. Am J Physiol 1987; 252: E441–E453.

    Article  CAS  PubMed  Google Scholar 

  50. Grunfeld C, Jones DS . Glucocorticoid-induced insulin resistance in vitro: inhibition of insulin-stimulated methylaminoisobutyric acid uptake. Horm Metab Res 1986; 18: 149–152.

    Article  CAS  PubMed  Google Scholar 

  51. Olefsky JM . Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J Clin Invest 1975; 56: 1499–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sivitz WI, Walsh SA, Morgan DA, Thomas MJ, Haynes WG . Effects of leptin on insulin sensitivity in normal rats. Endocrinology 1997; 138: 3395–3401.

    Article  CAS  PubMed  Google Scholar 

  53. Cohen B, Novick D, Rubinstein M . Modulation of insulin activities by leptin. Science 1996; 274: 1185–1188.

    Article  CAS  PubMed  Google Scholar 

  54. Andrews RC, Herlihy O, Livingstone DE, Andrew R, Walker BR . Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance. J Clin Endocrinol Metab 2002; 87: 5587–5593.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Ing. O Vercellini for animal care and Mrs C Ferese for histological preparations. The editorial assistance of Mrs SH Rogers in the correction of the manuscript is deeply recognized. This study was partly supported by grants from the Fondation de Recherche en Endocrinologie 05/06 (ES), FONCyT (PICT 5191/99) (ES), UNLP (11/M086) (GC) and FNSR (3200BO-105657/1) (RCG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Spinedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, G., Perelló, M., Camihort, G. et al. Impact of transient correction of increased adrenocortical activity in hypothalamo-damaged, hyperadipose female rats. Int J Obes 30, 73–82 (2006). https://doi.org/10.1038/sj.ijo.0803109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803109

Keywords

This article is cited by

Search

Quick links