Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiology and biochemistry

Metformin effectively restores the HPA axis function in diet-induced obese rats

Subjects

Abstract

Introduction

The hypothalamo-pituitary-adrenal (HPA) axis is perturbed in obesity. We previously reported presence of leptin resistance in the brainstem and uncoupling between central noradrenergic tone and the HPA axis in obesity-prone (DIO) rats. Metformin is shown to lower body weight and adiposity, but the underlying mechanism is unclear. We hypothesized that this is associated with restored HPA axis function.

Methods

Adult male DIO rats were placed on either a regular chow or HF diet for 7 weeks. Starting week 4, the animals were given either a low dose (60 mg/kg) or high dose (300 mg/kg) of metformin in drinking water. In addition to body weight and feeding, we examined different arms of the HPA axis to test if metformin can reinstate its function and coupling. To understand potential mechanisms, leptin signaling in the brainstem and circulating free fatty acid levels were also assessed.

Results

Metformin treatment lowered weight gain, fat mass, caloric intake, and serum leptin levels. HPA axis activity as determined by corticotropin-releasing hormone in the median eminence and serum corticosterone was decreased by metformin in a dose-dependent manner, and so was norepinephrine (NE) in the paraventricular nucleus. Importantly, metformin completely normalized the NE-HPA axis uncoupling. While brainstem pSTAT-3 and SOCS-3, key markers of leptin signaling, were not different between groups, circulating saturated and unsaturated free fatty acids were reduced in HF-fed, metformin-treated animals.

Conclusions

These findings suggest that oral metformin can successfully correct HPA axis dysfunction that is associated with lowered circulating free fatty acids in DIO rats, thereby uncovering a novel effect of metformin in the treatment of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design.
Fig. 2: BW, caloric intake, and feed efficiency.
Fig. 3: Oral metformin treatment decreases fat mass and circulating leptin in HF-fed DIO rats.
Fig. 4: Metformin dose-dependently lowers PVN NE and suppresses the HPA axis.
Fig. 5: Metformin effectively rescues the coupling between PVN NE and the HPA axis in DIO rats.
Fig. 6: No change in brainstem leptin signaling following metformin supplementation.
Fig. 7: Metformin treatment reduces circulating free fatty acids in HF-fed DIO rats.

Similar content being viewed by others

References

  1. Marin P, Darin N, Amemiya T, Andersson B, Jern S, Bjorntorp P. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism. 1992;41:882–6.

    CAS  PubMed  Google Scholar 

  2. Pasquali R, Cantobelli S, Casimirri F, Capelli M, Bortoluzzi L, Flamia R, et al. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab. 1993;77:341–6.

    CAS  PubMed  Google Scholar 

  3. Duclos M, Corcuff JB, Etcheverry N, Rashedi M, Tabarin A, Roger P. Abdominal obesity increases overnight cortisol excretion. J Endocrinol Investig. 1999;22:465–71.

    CAS  Google Scholar 

  4. Pasquali R, Biscotti D, Spinucci G, Vicennati V, Genazzani AD, Sgarbi L, et al. Pulsatile secretion of ACTH and cortisol in premenopausal women: effect of obesity and body fat distribution. Clin Endocrinol. 1998;48:603–12.

    CAS  Google Scholar 

  5. Levin BE, Richard D, Michel C, Servatius R. Differential stress responsivity in diet-induced obese and resistant rats. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1357–64.

    CAS  PubMed  Google Scholar 

  6. Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation. 2015;22:6–19.

    CAS  PubMed  Google Scholar 

  7. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53:865–71.

    PubMed  Google Scholar 

  8. Bose M, Olivan B, Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes. 2009;16:340–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bugajski J, Turon M, Gadek-Michalska A, Borycz JA. Catecholaminergic regulation of the hypothalamic-pituitary-adrenocortical activity. J Physiol Pharmacol. 1991;42:93–103.

    CAS  PubMed  Google Scholar 

  10. Guillaume V, Conte-Devolx B, Szafarczyk A, Malaval F, Pares-Herbute N, Grino M, et al. The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines. Neuroendocrinology. 1987;46:143–6.

    CAS  PubMed  Google Scholar 

  11. Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I. Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology. 1987;121:883–92.

    CAS  PubMed  Google Scholar 

  12. Shin AC, MohanKumar SM, Sirivelu MP, Claycombe KJ, Haywood JR, Fink GD, et al. Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats. Int J Obes. 2010;34:1218–26.

    CAS  Google Scholar 

  13. Shin AC, MohanKumar SMJ, Balasubramanian P, Sirivelu MP, Linning K, Woolcock A, et al. Responsiveness of hypothalamo-pituitary-adrenal axis to leptin is impaired in diet-induced obese rats. Nutr Diabetes. 2019;9:10.

    PubMed  PubMed Central  Google Scholar 

  14. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995;333:541–9.

    CAS  PubMed  Google Scholar 

  15. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–4.

    CAS  PubMed  Google Scholar 

  17. Apolzan JW, Venditti EM, Edelstein SL, Knowler WC, Dabelea D, Boyko EJ, et al. Long-term weight loss with metformin or lifestyle intervention in the diabetes prevention program outcomes study. Ann Intern Med. 2019;170:682–90.

    PubMed  PubMed Central  Google Scholar 

  18. Lentferink YE, Knibbe CAJ, van der Vorst MMJ. Efficacy of metformin treatment with respect to weight reduction in children and adults with obesity: a systematic review. Drugs. 2018;78:1887–901.

    CAS  PubMed  Google Scholar 

  19. Warnakulasuriya LS, Fernando MMA, Adikaram AVN, Thawfeek ARM, Anurasiri WL, Silva RR, et al. Metformin in the management of childhood obesity: a randomized control trial. Child Obes. 2018;14:553–65.

    PubMed  Google Scholar 

  20. Rouru J, Huupponen R, Pesonen U, Koulu M. Subchronic treatment with metformin produces anorectic effect and reduces hyperinsulinemia in genetically obese Zucker rats. Life Sci. 1992;50:1813–20.

    CAS  PubMed  Google Scholar 

  21. Duca FA, Cote CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21:506–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aubert G, Mansuy V, Voirol MJ, Pellerin L, Pralong FP. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metabolism. 2011;60:327–34.

    CAS  PubMed  Google Scholar 

  23. Labuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopien B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep. 2010;62:956–65.

    CAS  PubMed  Google Scholar 

  24. Lv WS, Wen JP, Li L, Sun RX, Wang J, Xian YX, et al. The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res. 2012;1444:11–9.

    CAS  PubMed  Google Scholar 

  25. Derkach KV, Zakharova IO, Romanova IV, Zorina II, Mikhrina AL, Shpakov AO. Metabolic parameters and functional state of hypothalamic signaling systems in A(Y)/a mice with genetic predisposition to obesity and the effect of metformin. Dokl Biochem Biophys. 2017;477:377–81.

    CAS  PubMed  Google Scholar 

  26. Kim YW, Kim JY, Park YH, Park SY, Won KC, Choi KH, et al. Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes. 2006;55:716–24.

    CAS  PubMed  Google Scholar 

  27. Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol. 1997;273:R725–30.

    CAS  PubMed  Google Scholar 

  28. Rouru J, Pesonen U, Koulu M, Huupponen R, Santti E, Virtanen K, et al. Anorectic effect of metformin in obese Zucker rats: lack of evidence for the involvement of neuropeptide Y. Eur J Pharmacol. 1995;273:99–106.

    CAS  PubMed  Google Scholar 

  29. Rouru J, Huupponen R, Santti E, Koulu M. Effect of subchronic metformin treatment on macronutrient selection in genetically obese Zucker rats. Pharmacol Toxicol. 1993;72:300–3.

    CAS  PubMed  Google Scholar 

  30. Paxinos G. The rat brain in streotaxic coordinates, 2nd ed. Academic: San Diego, CA; 1987.

  31. Francis J, MohanKumar SM, MohanKumar PS. Leptin inhibits norepinephrine efflux from the hypothalamus in vitro: role of gamma aminobutyric acid. Brain Res. 2004;1021:286–91.

    CAS  PubMed  Google Scholar 

  32. Clark KA, MohanKumar SM, Kasturi BS, MohanKumar PS. Effects of central and systemic administration of leptin on neurotransmitter concentrations in specific areas of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2006;290:R306–12.

    CAS  PubMed  Google Scholar 

  33. Clark KA, Shin AC, Sirivelu MP, Mohankumar SM, Mohankumar PS. Systemic administration of leptin decreases plasma corticosterone levels: role of hypothalamic norepinephrine. Brain Res. 2008;1195:89–95.

    CAS  PubMed  Google Scholar 

  34. Contreras GA, O’Boyle NJ, Herdt TH, Sordillo LM. Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids. J Dairy Sci. 2010;93:2508–16.

    CAS  PubMed  Google Scholar 

  35. Jequier E. Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci. 2002;967:379–88.

    CAS  PubMed  Google Scholar 

  36. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics. 2001;107:E55.

    CAS  PubMed  Google Scholar 

  37. Worsley R, Jane F, Robinson PJ, Bell RJ, Davis SR. Metformin for overweight women at midlife: a double-blind, randomized, controlled trial. Climacteric. 2015;18:270–7.

    CAS  PubMed  Google Scholar 

  38. Pacak K, McCarty R, Palkovits M, Cizza G, Kopin IJ, Goldstein DS, et al. Decreased central and peripheral catecholaminergic activation in obese Zucker rats. Endocrinology. 1995;136:4360–7.

    CAS  PubMed  Google Scholar 

  39. Berridge CW, Espana RA, Vittoz NM. Hypocretin/orexin in arousal and stress. Brain Res. 2010;1314:91–102.

    CAS  PubMed  Google Scholar 

  40. Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun. 2015;6:6266.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology. 1997;138:3859–63.

    CAS  PubMed  Google Scholar 

  42. Hay-Schmidt A, Helboe L, Larsen PJ. Leptin receptor immunoreactivity is present in ascending serotonergic and catecholaminergic neurons of the rat. Neuroendocrinology. 2001;73:215–26.

    CAS  PubMed  Google Scholar 

  43. Hosoi T, Kawagishi T, Okuma Y, Tanaka J, Nomura Y. Brain stem is a direct target for leptin’s action in the central nervous system. Endocrinology. 2002;143:3498–504.

    CAS  PubMed  Google Scholar 

  44. Benthem L, Keizer K, Wiegman CH, de Boer SF, Strubbe JH, Steffens AB, et al. Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation. Am J Physiol Endocrinol Metab. 2000;279:E1286–93.

    CAS  PubMed  Google Scholar 

  45. Widmaier EP, Margenthaler J, Sarel I. Regulation of pituitary-adrenocortical activity by free fatty acids in vivo and in vitro. Prostaglandins Leukot Essent Fatty Acids. 1995;52:179–83.

    CAS  PubMed  Google Scholar 

  46. Widmaier EP, Rosen K, Abbott B. Free fatty acids activate the hypothalamic-pituitary-adrenocortical axis in rats. Endocrinology. 1992;131:2313–8.

    CAS  PubMed  Google Scholar 

  47. Seifarth C, Schehler B, Schneider HJ. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp Clin Endocrinol Diabetes. 2013;121:27–31.

    CAS  PubMed  Google Scholar 

  48. Duan Y, Zhang R, Zhang M, Sun L, Dong S, Wang G, et al. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus. Neural Regen Res. 2013;8:2379–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schommers P, Thurau A, Bultmann-Mellin I, Guschlbauer M, Klatt AR, Rozman J, et al. Metformin causes a futile intestinal-hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Mol Metab. 2017;6:737–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bauman V, Ariel-Donges AH, Gordon EL, Daniels MJ, Xu D, Ross KM, et al. Effect of dose of behavioral weight loss treatment on glycemic control in adults with prediabetes. BMJ Open Diabetes Res Care. 2019;7:e000653.

    PubMed  PubMed Central  Google Scholar 

  51. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    CAS  PubMed  Google Scholar 

  52. Perry RJ, Resch JM, Douglass AM, Madara JC, Rabin-Court A, Kucukdereli H, et al. Leptin’s hunger-suppressing effects are mediated by the hypothalamic-pituitary-adrenocortical axis in rodents. Proc Natl Acad Sci USA. 2019;116:13670–79.

    CAS  PubMed  Google Scholar 

  53. Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med. 2014;20:759–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Leibowitz SF. Paraventricular nucleus: a primary site mediating adrenergic stimulation of feeding and drinking. Pharmacol Biochem Behav. 1978;8:163–75.

    CAS  PubMed  Google Scholar 

  55. Leibowitz SF, Brown O, Tretter JR, Kirschgessner A. Norepinephrine, clonidine, and tricyclic antidepressants selectively stimulate carbohydrate ingestion through noradrenergic system of the paraventricular nucleus. Pharmacol Biochem Behav. 1985;23:541–50.

    CAS  PubMed  Google Scholar 

  56. Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 2019;30:706–19.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ibars M, Ardid-Ruiz A, Suarez M, Muguerza B, Blade C, Aragones G. Proanthocyanidins potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced obesity. Int J Obes. 2017;41:129–36.

    CAS  Google Scholar 

  58. Sahu A. Intracellular leptin-signaling pathways in hypothalamic neurons: the emerging role of phosphatidylinositol-3 kinase-phosphodiesterase-3B-cAMP pathway. Neuroendocrinology. 2011;93:201–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kullmann S, Kleinridders A, Small DM, Fritsche A, Haring HU, Preissl H, et al. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol. 2020;8:524–34.

    CAS  PubMed  Google Scholar 

  60. Kullmann S, Valenta V, Wagner R, Tschritter O, Machann J, Haring HU, et al. Brain insulin sensitivity is linked to adiposity and body fat distribution. Nat Commun. 2020;11:1841.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cassaglia PA, Shi Z, Brooks VL. Insulin increases sympathetic nerve activity in part by suppression of tonic inhibitory neuropeptide Y inputs into the paraventricular nucleus in female rats. Am J Physiol Regul Integr Comp Physiol. 2016;311:R97–103.

    PubMed  PubMed Central  Google Scholar 

  62. Shi Z, Zhao D, Cassaglia PA, Brooks VL. Sites and sources of sympathoexcitation in obese male rats: role of brain insulin. Am J Physiol Regul Integr Comp Physiol. 2020;318:R634–48.

    PubMed  Google Scholar 

  63. Stocker SD, Gordon KW. Glutamate receptors in the hypothalamic paraventricular nucleus contribute to insulin-induced sympathoexcitation. J Neurophysiol. 2015;113:1302–9.

    CAS  PubMed  Google Scholar 

  64. Chan O, Inouye K, Akirav E, Park E, Riddell MC, Vranic M, et al. Insulin alone increases hypothalamo-pituitary-adrenal activity, and diabetes lowers peak stress responses. Endocrinology. 2005;146:1382–90.

    CAS  PubMed  Google Scholar 

  65. Petersen JS, Liu W, Kapusta DR, Varner KJ. Metformin inhibits ganglionic neurotransmission in renal nerves. Hypertension. 1997;29:1173–7.

    CAS  PubMed  Google Scholar 

  66. Manzella D, Grella R, Esposito K, Giugliano D, Barbagallo M, Paolisso G. Blood pressure and cardiac autonomic nervous system in obese type 2 diabetic patients: effect of metformin administration. Am J Hypertens. 2004;17:223–7.

    CAS  PubMed  Google Scholar 

  67. Karise I, Bargut TC, Del Sol M, Aguila MB, Mandarim-de-Lacerda CA. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother. 2019;111:1156–65.

    CAS  PubMed  Google Scholar 

  68. Geerling JJ, Boon MR, van der Zon GC, van den Berg SA, van den Hoek AM, Lombes M, et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes. 2014;63:880–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Katrina Linning for her excellent technical assistance and for maintaining the rat colony.

Funding

This study was supported in part by NIH grant R01 AG027697 to PSM and NSF grant IBN0236385 to SMJM and PSM. ACS was supported by Biomedical Health Research Initiative grant, MSU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew C. Shin or Puliyur S. MohanKumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, A.C., Balasubramanian, P., Suryadevara, P. et al. Metformin effectively restores the HPA axis function in diet-induced obese rats. Int J Obes 45, 383–395 (2021). https://doi.org/10.1038/s41366-020-00688-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-00688-z

Search

Quick links