Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes

Abstract

INTRODUCTION:

Obese and type 2 diabetic (T2DM) adolescents present with reduced insulin-stimulated glucose disposal and elevated intramyocellular lipids (IMCL) indicating comparable muscular insulin resistance and increased flux of free fatty acids (FFA) as in adult patients. In humans, the causal relationships between obesity and insulin resistance were examined in detail over the last years.

METHODS:

The impact of genetic factors was analyzed in young nonobese nondiabetic first-degree relatives of T2DM (REL-DM), whereas environmental factors were tested by challenging humans without genetic T2DM risk with lipid infusions or high-fat diets.

RESULTS:

REL-DM exhibit defects in mitochondrial oxidation and phosphorylation. Increased FFA availability results in accumulation of intramyocellular fatty acyl-CoA (FA-CoA) inducing a series of alterations: (i) inhibition of insulin signaling, (ii) reduction of insulin-(in)dependent glucose transport/phosphorylation, (iii) decreased insulin-stimulated glycogen synthesis, (iv) impaired insulin-stimulated oxidative phosphorylation (ATP synthesis), (v) accumulation of ectopic triglycerides (IMCL), (vi) reduced expression of peroxisome proliferator activated receptor γ (PPARγ) coactivator-1 (PGC-1) and PGC-1-controlled genes involved in mitochondrial biogenesis and oxidative phosphorylation and possibly also (vii) initiation of inflammatory processes by activation of PKC and nuclear factor-κB and decreased expression of matrix metalloproteinases (MMPs).

CONCLUSIONS:

The abnormalities could lead to a vicious cycle in which mitochondrial dysfunction, elevation of intramycellular lipids, impaired lipid oxidation and insulin resistance amplify each other. This is similar to the adaptive changes to fasting, which prevent energy loss during excessive FFA availability. The sequence of events may start with mitochondrial dysfunction in genetic insulin resistance and with increased intramyocellular lipids in environmental insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Duncan GE, Li SM, Zhou XH . Prevalence and trends of a metabolic syndrome phenotype among US adolescents, 1999–2000. Diabetes Care 2004; 27: 2438–2443.

    Article  Google Scholar 

  2. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J, Sherwin RS, Caprio S . Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004; 350: 2362–2374.

    Article  CAS  Google Scholar 

  3. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, Savoye M, Rieger V, Taksali S, Barbetta G, Sherwin RS, Caprio S . Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med 2002; 346: 802–810.

    Article  CAS  Google Scholar 

  4. Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, Boselli L, Barbetta G, Allen K, Rife F, Savoye M, Dziura J, Sherwin R, Shulman GI, Caprio S . Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 2003; 362: 951–957.

    Article  CAS  Google Scholar 

  5. Krssak M, Petersen KF, Dresner A, DiPietro L, Vogel SM, Rothman DL, Roden M, Shulman GI . Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999; 42: 113–116.

    Article  CAS  Google Scholar 

  6. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, Vanzulli A, Testolin G, Pozza G, Del Maschio A, Luzi L . Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999; 48: 1600–1606.

    Article  CAS  Google Scholar 

  7. Kautzky-Willer A, Krssak M, Winzer C, Pacini G, Tura A, Serdat F, Wagner OF, Brabant G, Horn R, Stingl H, Waldhäusl W, Roden M . Increased intramyocellular lipid concentrations identify impaired glucose and energy metabolism in women with prior gestational diabetes. Diabetes 2003; 52: 244–251.

    Article  CAS  Google Scholar 

  8. Roden M . Non-invasive studies of glycogen metabolism in human skeletal muscle using magnetic resonance spectroscopy. Curr Opin Clin Nutr Metab Care 2001; 4: 26–266.

    Article  Google Scholar 

  9. Perseghin G, Price TB, Falk Petersen K, Roden M, Cline GW, Gerow K, Rothman DL, Shulman GI . Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 1996; 335: 1357–1362.

    Article  CAS  Google Scholar 

  10. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI . Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664–671.

    Article  CAS  Google Scholar 

  11. Lazar MA . How obesity causes diabetes: not a tall tale. Science 2005; 307: 373–375.

    Article  CAS  Google Scholar 

  12. Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O . Mutation analysis of peroxysome proliferators-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 2001; 44: 2220–2226.

    Article  CAS  Google Scholar 

  13. Roden M . How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 2004; 19: 92–96.

    CAS  PubMed  Google Scholar 

  14. Boden G . Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997; 46: 3–10.

    Article  CAS  Google Scholar 

  15. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI . Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97: 2859–2865.

    Article  CAS  Google Scholar 

  16. Roden M, Krssak M, Stingl H, Gruber S, Hofer A, Fürnsinn C, Moser E, Waldhäusl W . Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes 1999; 48: 358–364.

    Article  CAS  Google Scholar 

  17. Krebs M, Krssak M, Nowotny P, Weghuber D, Gruber S, Mlynarik V, Bischof M, Stingl H, Fürnsinn C, Waldhäusl W, Roden M . Free fatty acids inhibit the glucose-stimulated increase of intramuscular glucose-6-phosphate concentration in humans. J Clin Endocrinol Metab 2001; 86: 2153–2160.

    CAS  PubMed  Google Scholar 

  18. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI . Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103: 253–259.

    Article  CAS  Google Scholar 

  19. Boden G, Lebed B, Schatz M, Homko C, Lemieux S . Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 2001; 50: 1612–1617.

    Article  CAS  Google Scholar 

  20. Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhäusl W, Roden M . Increased lipid availability impairs insulin stimulated ATP synthesis im human skeletal muscle. Diabetes 2005; 54: A381.

    Google Scholar 

  21. Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS . Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 2003; 100: 7996–8001.

    Article  CAS  Google Scholar 

  22. Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, DeFronzo R, Cusi K . Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 2005; 54: 1640–1648.

    Article  CAS  Google Scholar 

  23. Itani SI, Ruderman NB, Schmieder F, Boden G . Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002; 51: 2005–2011.

    Article  CAS  Google Scholar 

  24. Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, Defronzo RA, Jenkinson CP, Mandarino LJ . Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 2005; 280: 10290–10297.

    Article  CAS  Google Scholar 

  25. Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR . A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 2005; 54: 1926–1933.

    Article  CAS  Google Scholar 

  26. Clore JN, Li J, Gill R, Gupta S, Spencer R, Azzam A, Zuelzer W, Rizzo WB, Blackard WG . Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans. Am J Physiol 1998; 275: E665–E670.

    CAS  PubMed  Google Scholar 

  27. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE . Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005; 54: 8–14.

    Article  CAS  Google Scholar 

  28. Kelley DE, Mandarino LJ . Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49: 677–683.

    Article  CAS  Google Scholar 

  29. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ . Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003; 100: 8466–8471.

    Article  CAS  Google Scholar 

  30. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC . PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  Google Scholar 

  31. Patti ME, Kahn BB . Nutrient sensor links obesity with diabetes risk. Nat Med 2005; 10: 1049–1050.

    Article  Google Scholar 

  32. Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M . Overactivation of S6K1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 2005; 54: 2674–2684.

    Article  CAS  Google Scholar 

  33. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI . Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300: 1140–1142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Roden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roden, M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes 29 (Suppl 2), S111–S115 (2005). https://doi.org/10.1038/sj.ijo.0803102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803102

Keywords

This article is cited by

Search

Quick links