Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle

Abstract

Objective: It has been reported that an increased availability of free fatty acids (NEFA) not only interferes with glucose utilization in insulin-dependent tissues, but may also result in an uncoupling effect of heart metabolism. We aimed therefore to investigate the effect of an increased availability of NEFA on gene expression of proteins involved in transmembrane fatty acid (FAT/CD36) and glucose (GLUT4) transport and of the uncoupling proteins UCP2 and 3 at the heart and skeletal muscle level.

Study Design: Euglycemic hyperinsulinemic clamp was performed after 24 h Intralipid® plus heparin or saline infusion in lean Zucker rats. Skeletal and heart muscle glucose utilization was calculated by 2-deoxy-[1-3H]-D-glucose technique. Quantification of FAT/CD36, GLUT4, UCP2 and UCP3 mRNAs was obtained by Northern blot analysis or RT-PCR.

Results: In Intralipid® plus heparin infused animals a significant decrease in insulin-mediated glucose uptake was observed both in the heart (22.62±2.04 vs 10.37±2.33 ng/mg/min; P<0.01) and in soleus muscle (13.46±1.53 vs 6.84±2.58 ng/mg/min; P<0.05). FAT/CD36 mRNA was significantly increased in skeletal muscle tissue (+117.4±16.3%, P<0.05), while no differences were found at the heart level in respect to saline infused rats. A clear decrease of GLUT4 mRNA was observed in both tissues. The 24 h infusion of fat emulsion resulted in a clear enhancement of UCP2 and UCP3 mRNA levels in the heart (99.5±15.3 and 80±4%) and in the skeletal muscle (291.5±24.7 and 146.9±12.7%).

Conclusions: As a result of the increased availability of NEFA, FAT/CD36 gene expression increases in skeletal muscle, but not at the heart level. The augmented lipid fuel supply is responsible for the depression of insulin-mediated glucose transport and for the increase of UCP2 and 3 gene expression in both skeletal and heart muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Randle PJ, Garland PB, Hales CN, Newsholme EA . The glucose-fatty acid cycle: its role in insulin insensitivity and the metabolic disturbances of diabetes mellitus Lancet 1963 i: 785–789.

    Article  Google Scholar 

  2. Shulman GI . Cellular mechanisms of insulin resistance J Clin Invest 2000 106: 171–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kahn BB, Flier JS . Obesity and insulin resistance J Clin Invest 2000 106: 473–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferrannini E, Barret EJ, Bevilacqua S, DeFronzo RA . Effect of fatty acids on glucose production and utilization in man J Clin Invest 1983 72: 1737–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Ters M, Haaparanta M . Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo J Clin Invest 1992 89: 1767–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrannini E, Santoro D, Bonadonna R, Natali A, Parodi O, Camici PG . Metabolic and hemodynamic effects of insulin on human hearts Am J Physiol 1993 264: E308–E315.

    CAS  PubMed  Google Scholar 

  7. Nicholl TA, Lopashuk GD, McNeill JH . Effects of free fatty acids and dichloroacetate on isolated working diabetic rat heart Am J Physiol 1991 261: H1053–H1059.

    CAS  PubMed  Google Scholar 

  8. Camps M, Castellò A, Muñoz P, Monfar M, Testar X, Palacìn M, Zorzano A . Effect of diabetes and fasting on GLUT4 (muscle/fat) glucose transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle Biochem J 1992 282: 765–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laybutt DR, Thompson AL, Cooney GJ, Kraegen EW . Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in rat cardiac muscle in vivo Am J Physiol 1997 273: H1309–H1316.

    CAS  PubMed  Google Scholar 

  10. Luiken JJ, Schaap FG, van Nieuwenhoven FA, van der Vusse GJ, Bonen A, Glatz JF . Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins Lipids 1999 34 (Suppl): S169–S175.

    Article  CAS  PubMed  Google Scholar 

  11. Sorrentino D, Robinson RB, Kiang CL, Berk PD . At physiologic albumin/oleate concentrations oleate uptake by isolated heptatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory J Clin Invest 1989 84: 1325–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abumrad NA, El-Maghrabi MR, Amri E, Lopez E, Grimaldi PA . Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation J Biol Chem 1993 268: 17665–17668.

    CAS  PubMed  Google Scholar 

  13. Sfeir Z, Ibrahimi A, Amri E, Grimaldi P, Abumrad NA . Regulation of FAT/CD36 gene expression: further evidence in support of a role of the protein in fatty acid binding/transport Prost Leuk Essent Fatty Acids 1997 57: 17–21.

    Article  CAS  Google Scholar 

  14. Bonen A, Dyck DJ, Ibrahimi A, Abumrad NA . Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36 Am J Physiol 1999 276: E642–E649.

    CAS  PubMed  Google Scholar 

  15. Nisoli E, Carruba MO, Tonello C, Macor C, Federspil G, Vettor R . Induction of fatty acid translocase/CD36, peroxisome proliferator-activated receptor-gamma2, leptin, uncoupling proteins 2 and 3, and tumor necrosis factor-alpha gene expression in human subcutaneous fat by lipid infusion Diabetes 2000 49: 319–324.

    Article  CAS  PubMed  Google Scholar 

  16. Van der Lee KA, Vork MM, De Vries JE, Willemsen PH, Glatz JF, Reneman RS, Van Der Vusse GJ, Van Bilsen M . Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes J Lipid Res 2000 41: 41–47.

    CAS  PubMed  Google Scholar 

  17. Dedukhova VI, Mokhova EN, Skulachev VP, Starkov AA, Arrigoni-Martelli E, Bobyleva VA . Uncoupling effect of fatty acids on heart muscle mitochondria and submitochondrial particles FEBS Lett 1991 295: 51–54.

    Article  CAS  PubMed  Google Scholar 

  18. Simonyan RA, Skulachev VP . Thermoregulatory uncoupling in heart muscle mitochondria: involvement of the ATP/ADP antiporter and uncoupling protein FEBS Lett 1998 436: 81–84.

    Article  CAS  PubMed  Google Scholar 

  19. Hidaka S, Kakuma T, Yoshimatus H, Yasunaga S, Kurokawa M, Sakata T . Molecular cloning of rat uncoupling protein 2 cDNA and its expression in genetically obese Zucker fatty (fa/fa) rats Biochim Biophys Acta 1998 1389: 178–181.

    Article  CAS  PubMed  Google Scholar 

  20. Gong D-W, He Y, Karash M, Reitman M . Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agents, and leptin J Biol Chem 1997 272: 24129–24132.

    Article  CAS  PubMed  Google Scholar 

  21. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seidoux J, Muzzin P, Giacobino J-P . Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression FEBS Lett 1997 408: 39–42.

    Article  CAS  PubMed  Google Scholar 

  22. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB . UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue Biochem-Biophys Res Commun 1997 235: 79–82.

    Article  CAS  PubMed  Google Scholar 

  23. Allison TB, Brutting SP, Crass MF III Eliot RS, Shipp JC . Reduced high-energy phosphate levels in rat hearts: (1) effect of alloxan diabetes Am J Physiol 1976 230: 1744–1750.

    Article  CAS  PubMed  Google Scholar 

  24. Hidaka S, Kakuma T, Yoshimatsu H, Sakino H, Fukuchi S, Sakata T . Streptozotocin treatment upregulates uncoupling protein 3 expression in the rat heart Diabetes 1999 48: 430–435.

    Article  CAS  PubMed  Google Scholar 

  25. DeFronzo RA, Tobine JD, Andres R . Glucose clamp technique: a method for quantifying insulin secretion and resistance Am J Physiol 1979 237: E214–E223.

    CAS  PubMed  Google Scholar 

  26. Ferré P, Burnol AFF, Leturque A, Terrettaz J, Penicaud L, Jeanrenaud B, Girard J . Glucose utilization in vivo and insulin-sensitivity of rat brown adipose tissue in various physiological and pathological conditions Biochem J 1985 233: 249–252.

    Article  Google Scholar 

  27. James DE, Jenkins AB, Kraegen W . Heterogeneity of insulin action on individual muscles in vivo: euglycemic clamp studies in rats Am J Physiol 1985 248: E567–E574.

    CAS  PubMed  Google Scholar 

  28. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction Anal Biochem 1987 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  29. Postic C, Leturque A, Rencurel F, Printz RL, Forest C, Granner DK, Girard J . The effects of hyperinsulinemia and hyperglycemia on GLUT4 and Hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue Diabetes 1993 42: 922–929.

    Article  CAS  PubMed  Google Scholar 

  30. Gaudette MF, Crain WR . A simple method for quantifying mRNAs in small numbers of early mouse embryos Nucleic Acids Res 1991 19: 1879–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Furler SM, Cooney GJ, Hegarty BD, Lim-Fraser MY, Kraegen EW, Oakes ND . Local factors modulate tissue-specific NEFA utilizatioin: assessment in rats using 3H-(R)-2-bromopalmitate Diabetes 2000 49: 1427–1433.

    Article  CAS  PubMed  Google Scholar 

  32. Coburn CT, Knapp FF Jr Febbraio M, Beets AL, Silverstein RL, Abumrad NA . Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice J Biol Chem 2000 275: 32523–32529.

    Article  CAS  PubMed  Google Scholar 

  33. Luiken JJ, Turcotte LP, Bonen A . Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles J Lipid Res 1999 40: 1007–1016.

    CAS  PubMed  Google Scholar 

  34. Glatz JFC, van Nieuwenhoven FA, Luiken JJFP, Schaap GF, van der Vusse GJ . Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism Prost Leuk Essent Fatty Acids 1997 57: 373–378.

    Article  CAS  Google Scholar 

  35. Luiken JJ, Arumugam Y, Dyck DJ, Bell RC, Pelsers MM, Turcotte LP, Tandon NN, Glatz JF, Bonen A . Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats J Biol Chem 2001 276: 40567–40573.

    Article  CAS  PubMed  Google Scholar 

  36. Garvey WG, Hardiin D, Juhaszova M, Dominguez JH . Effects of diabetes on myocardial glucose transport system in rats: implicatioin for diabetic cardiomyopathy Am J Physiol 1993 264: 837–844.

    Google Scholar 

  37. Zierath JR, Houseknecht KL, Gnudi L, Kahn BB . High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect Diabetes 1997 46: 215–223.

    Article  CAS  PubMed  Google Scholar 

  38. Kahn BB, Pedersen O . Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity Encrocrinology 1993 132: 13–22.

    Article  CAS  Google Scholar 

  39. Kim Y, Tamura T, Iwashita S, Tokuyama K, Suzuki M . Effect of high-fat diet on gene expression of GLUT4 and insulin receptor in soleus muscle Biochem Biophys Res Commun 1994 202: 519–526.

    Article  CAS  PubMed  Google Scholar 

  40. Sevilla L, Guma A, Enrique-Tarancon G, Mora S, Munoz P, Palacin M, Testar X, Zorzano A . Chronic high-fat feeding and middle-aging reduce in an additive fashion Glut4 expression in skeletal muscle and adipose tissue Biochem Biophys Res Commun 1997 235: 89–93.

    Article  CAS  PubMed  Google Scholar 

  41. Weiss JN, Lamp ST . Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiomyocytes Science 1987 238: 67–69.

    Article  CAS  PubMed  Google Scholar 

  42. Hendrickson S, St Louis JD, Lowe JE . Free fatty acid metabolism during myocardial ischemia and reperfusion Mol Cell Biochem 1997 166: 85–94.

    Article  CAS  PubMed  Google Scholar 

  43. Belke DD, Larsen TS, Gibbs EM, Severson DL . Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice Am J Physiol 2000 279: E1104–E1113.

    CAS  Google Scholar 

  44. Schonfeld P, Schld L, Kunz W . Long-chain fatty acids as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria Biochem Biophys Acta 1989 977: 266–272.

    CAS  PubMed  Google Scholar 

  45. Rottemberg H, Hashimoto K . Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria Biochemistry 1986 25: 1747–1755.

    Article  Google Scholar 

  46. Wojtezak L, Schonfeld P . Effect of fatty acids on energy coupling processes in mitochondria Biochim Biophys Acta 1993 1183: 41–57.

    Article  Google Scholar 

  47. Samec S, Seydoux J, Duloo A . Interorgan signalling between brown adipose tissue metabolism and skeletal muscle uncoupling protein homologues: is there a role for circulating fatty acids Diabetes 1998 47: 298–302.

    Article  Google Scholar 

  48. Weigle DS, Selfbridge LE, Schwartz MW, Seeley RJ, Cummings DE, Havel PJ, Kuiper JL, Beltran del Rio H . Elevated free fatty acids induce uncoupling protein 3 expression, in muscle Diabetes 1998 47: 298–302.

    Article  CAS  PubMed  Google Scholar 

  49. Van Der Lee KA, Willemsen PH, Samec S, Seydoux J, Dulloo AG, Pelsers MM, Glatz JF, Van Der Vusse GJ, Van Bilsen M . Fasting-induced changes in the expression of genes controlling substrate metabolism in the rat heart J Lipid Res 2001 42: 1752–1758.

    CAS  PubMed  Google Scholar 

  50. Van Der Lee KA, Willemsen P, Van Der Vusse GJ, Van Bilsen M . Effects of fatty acids on uncoupling protein-2 expression in the rat heart FASEB J 2000 14: 495–502.

    Article  CAS  PubMed  Google Scholar 

  51. Allison TB, Brutting SP, Crass MF III Eliot RS, Shipp JC . Reduced high-energy phosphate levels in rat hearts: (1) effect of alloxan diabetes Am J Physiol 1976 230: 1744–1750.

    Article  CAS  PubMed  Google Scholar 

  52. Samec S, Seydoux J, Dulloo AG . Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J 1998 12: 715–724.

    Article  CAS  PubMed  Google Scholar 

  53. Kageyama H, Suga A, Kashiba M, Oka J, Osaka T, Kashiwa T, Hirano T, Nemato K, Namba Y, Ricquier D, Giacobino JP, Inoue S . Increased uncoupling protein-2 and -3 gene expression in skeletal muscle of STZ-induced diabetic rats FEBS Lett 1998 440: 450–453.

    Article  CAS  PubMed  Google Scholar 

  54. Himms-Hagen J, Harper ME . Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis Exp Biol Med 2001 226: 78–84.

    Article  CAS  Google Scholar 

  55. Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, Casteilla L . A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation FASEB J 1997 11: 809–815.

    Article  CAS  PubMed  Google Scholar 

  56. Boss O, Hagen T, Lowell BB . Uncoupling proteins 2 and 3: potential regulators of mitochondrial enery metabolism Diabetes 2000 49: 143–156.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of ‘Ricerca Finalizzata della Regione Veneto’ and by MURST (Ministero della Ricerca Scientifica e Tecnologica) grant no. 9806241798006 to GF and grant no. 980624179800 to MOC. We thank Mrs Marilena Tormene and Mrs Sonia Leandri for the expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Vettor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vettor, R., Fabris, R., Serra, R. et al. Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obes 26, 838–847 (2002). https://doi.org/10.1038/sj.ijo.0802005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802005

Keywords

This article is cited by

Search

Quick links