Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

TNFα and leptin inhibit basal and glucose-stimulated insulin secretion and gene transcription in the HIT-T15 pancreatic cells

Abstract

BACKGROUND: Tumor necrosis factor α (TNFα), a cytokine produced at inflammatory sites and in adipose tissue, is known primarily for its detrimental effects on insulin action. There is evidence to suggest that TNFα may also influence β-cell function. Leptin is another adipose tissue-derived hormone that might also act on β-cells.

OBJECTIVE: We explored the independent and combined effects of TNFα and leptin upon basal and glucose-stimulated insulin transcription and secretion in the HIT-T15 pancreatic β cell line.

METHODS: Cells were cultured for 40 h in the presence of near-normal basal (7 mM) or high (16.7 mM) glucose and treated with either TNFα (1, 10 and 50 ng/ml) or leptin (10, 50 and 100 ng/ml) or both together. Insulin concentrations were measured by radioimmunoassay. Insulin mRNA levels were evaluated by a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method, after normalization with β-actin mRNA.

RESULTS: TNFα significantly suppressed basal and glucose-stimulated insulin secretion and proinsulin mRNA transcription in a dose-dependent manner, an effect that was more powerful in the presence of high glucose. Leptin also inhibited dose-dependent insulin mRNA and protein at both glucose concentrations, but did not appear to further potentiate the suppressive effects of TNFα.

CONCLUSION: TNFα suppresses both basal and glucose-stimulated insulin transcription and secretion in HIT-T15 cells, an effect that is enhanced significantly by high glucose. Leptin also independently inhibits basal and glucose-stimulated insulin secretion and transcription but does not modify TNFα effects. These effects might contribute to the abnormalities of glucose metabolism that characterize conditions of increased TNFα and/or leptin production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hotamisligil GS, Spiegelman BM . Tumor necrosis factor α: a key component of the obesity-diabetes link Diabetes 1994 43: 1271–1278.

    Article  CAS  Google Scholar 

  2. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM . Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance J Clin Invest 1995 95: 2409–2415.

    Article  CAS  Google Scholar 

  3. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB . The expression of tumor necrosis factor in human adipose tissue J Clin Invest 1995 95: 2111–2119.

    Article  CAS  Google Scholar 

  4. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS . Protection from obesity-induced insulin resistance in mice lacking TNF-α function Nature 1997 389: 610–614.

    Article  CAS  Google Scholar 

  5. Hotamisligil GS . Mechanisms of TNF-α-induced insulin resistance Exp Clin Endocrinol Diabetes 1999 107: 119–125.

    Article  CAS  Google Scholar 

  6. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM . Tumor necrosis factor α inhibits signaling from the insulin receptor Proc Natl Acad Sci USA 1994 91: 4854–4858.

    Article  CAS  Google Scholar 

  7. Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM . Tumor necrosis factor (TNF)-α inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase J Biol Chem 1996 271: 13018–13022.

    Article  CAS  Google Scholar 

  8. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM . IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance Science 1996 271: 665–668.

    Article  CAS  Google Scholar 

  9. Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A . Tumor necrosis factor-α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates J Biol Chem 1993 268: 26055–26058.

    CAS  PubMed  Google Scholar 

  10. Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A . Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1) J Biol Chem 1995 270: 23780–23784.

    Article  CAS  Google Scholar 

  11. Zhang S, Kim K . TNF-α inhibits glucose-induced insulin secretion in a pancreatic β-cell line FEBS Lett 1995 377: 237–239.

    Article  CAS  Google Scholar 

  12. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue Nature 1994 372: 425–432.

    Article  CAS  Google Scholar 

  13. Buchanan C, Mahesh V, Zamorano P, Brann D . Central nervous system effects of leptin Trends Endocr Metab 1998 9: 146–150.

    Article  CAS  Google Scholar 

  14. Ahren B, Larsson H . Leptin—a regulator of islet function? Its plasma levels correlate with glucagon and insulin secretion in healthy women Metabolism 1997 46: 1477–1481.

    Article  CAS  Google Scholar 

  15. Kulkarni RN, Wang Z, Wang R, Hurley JD, Smith DM, Ghatei MA, Withers DJ, Gardiner JV, Bailey CJ, Bloom SR . Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice J Clin Invest 1997 100: 2729–2736.

    Article  CAS  Google Scholar 

  16. Emilsson V, Liu Y, Cawthorne MA, Morton, NM, Davenport M . Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion Diabetes 1997 46: 313–316.

    Article  CAS  Google Scholar 

  17. Seufert J, Kieffer T, Leech CA, Holz GG, Moritz W, Ricordi C, Habener JF . Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus J Clin Endocr Metab 1999 84: 670–676.

    CAS  PubMed  Google Scholar 

  18. Lupi R, Marchetti P, Maffei M, Guerra SD, Benzi L, Marselli L, Bertacca A, Navalesi R . Effects of acute or prolonged exposure to human leptin on isolated human islet function Biochem Biophys Res Commun 1999 256: 637–641.

    Article  CAS  Google Scholar 

  19. Pallett AL, Morton NM, Cawthorne MA, Emilsson V . Leptin inhibits insulin secretion and reduces insulin mRNA levels in rat isolated pancreatic islets Biochem Biophys Res Commun 1997 238: 267–270.

    Article  CAS  Google Scholar 

  20. Seufert J, Kieffer T, Habener JF . Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice Proc Natl Acad Sci USA 1999 96: 674–679.

    Article  CAS  Google Scholar 

  21. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F . Effects of the obese gene product on body weight regulation in ob/ob mice Science 1995 269: 540–543.

    Article  CAS  Google Scholar 

  22. Muzzin P, Einsensmith RC, Copeland KC, Woo SLC . Correction of obesity and diabetes in genetically obese mice by leptin gene therapy Proc Natl Acad Sci USA 1996 93: 14804–14808.

    Article  CAS  Google Scholar 

  23. Leclercq-Meyer V, Considine RV, Sener A, Malaisse WJ . Do leptin receptors play a functional role in the endocrine pancreas? Biochem Biophys Res Commun 1996 229: 794–798.

    Article  CAS  Google Scholar 

  24. Shimizu H, Ohtani K, Tsuchiya T, Takahashi H, Uehara Y, Sato N, Mori M . Leptin stimulates insulin secretion and synthesis in HIT-T 15 cells Peptides 1997 18: 1263–1266.

    Article  CAS  Google Scholar 

  25. Tanizawa Y, Okuya S, Ishihara H, Asano T, Yada T, Oka Y . Direct stimulation of basal insulin secretion by physiological concentrations of leptin in pancreatic β cells Endocrinology 1997 138: 4513–4516.

    Article  CAS  Google Scholar 

  26. Santerre RF, Cook RA, Crisel RM, Sharp JD, Schmidt RJ, Williams DC, Wilson CP . Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells Proc Natl Acad Sci USA 1981 78: 4339–4343.

    Article  CAS  Google Scholar 

  27. Golstein P . Cell death: TRAIL and its receptors Curr Biol 1997 7: R750–R753.

    Article  CAS  Google Scholar 

  28. Ledgerwood EC, Pober JS, Bradley JR . Recent advances in the molecular basis of TNF signal transduction Lab Invest 1999 9: 1041–1049.

    Google Scholar 

  29. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP . Tumor necrosis factor receptor and Fas signaling A Rev Immunol 1999 17: 331–367.

    Article  CAS  Google Scholar 

  30. Leeper-Woodford SK, Tobin BW . Tumor necrosis factor activity of pancreatic islets Am J Physiol 1997 273: E433–437.

    CAS  PubMed  Google Scholar 

  31. Stephens LA, Thomas HE, Ming L, Grell M, Darwiche R, Volodin L, Kay TWH . Tumor necrosis factor-α activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic β cells Endocrinology 1999 140: 3219–3227.

    Article  CAS  Google Scholar 

  32. Xu GG, Rothenberg PL . Insulin receptor signaling in the β-cell influences insulin gene expression and insulin content Diabetes 1998 47: 1243–1252.

    CAS  PubMed  Google Scholar 

  33. Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR . Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes Cell 1999 96: 329–339.

    Article  CAS  Google Scholar 

  34. Uysal KT, Wiesbrock SM, Hotamisligil GS . Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α-mediated insulin resistance in genetic obesity Endocrinology 1998 139: 4832–4838.

    Article  CAS  Google Scholar 

  35. Ishizuka N, Yagui K, Tokuyama Y, Yamada K, Suzuki Y, Miyazaki J, Hashimoto N, Makino H, Saito Y, Kanatsuka A . Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic β cells Metabolism 1999 48: 1485–1492.

    Article  CAS  Google Scholar 

  36. Mandrup-Poulsen T, Bendtzen K, Dinarello CA, Nerup J . Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell cytotoxicity J Immunol 1987 139: 4077–4082.

    CAS  PubMed  Google Scholar 

  37. Cetkovic-Cvrlje M, Eizirik DL . TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets mainly via generation of nitric oxide Cytokine 1994 6: 399–406.

    Article  CAS  Google Scholar 

  38. Corbett JA, Sweetland MA, Wang JL, Lancaster JR Jr, McDaniel ML . Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans Proc Natl Acad Sci USA 1993 90: 1731–1735.

    Article  CAS  Google Scholar 

  39. Poitout V, Rouault C, Guerre-Millo M, Briaud I, Reach G . Inhibition of insulin secretion by leptin in normal rodent islets of Langerhans Endocrinology 1998 139: 822–826.

    Article  CAS  Google Scholar 

  40. Ookuma M, Ookuma K, York DA . Effects of leptin on insulin secretion from isolated rat pancreatic islets Diabetes 1998 47: 219–223.

    Article  CAS  Google Scholar 

  41. Kieffer TJ, Heller RS, Habener JF . Leptin receptors expressed on pancreatic β-cells Biochem Biophys Res Commun 1996 224: 522–527.

    Article  CAS  Google Scholar 

  42. Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, Lai C, Tartaglia PA . The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors Proc Natl Acad Sci USA 1996 93: 8374–8378.

    Article  CAS  Google Scholar 

  43. Yamashita T, Murakami T, Otani S, Kuwajima M, Shima K . Leptin receptor signal transduction: OBRa and OBRb of fa type Biochem Biophys Res Commun 1998 246: 752–759.

    Article  CAS  Google Scholar 

  44. Bjorbaek C, Uotani S, da Silva B, Flier JS . Divergent signaling capabilities of the long and short isoforms of the leptin receptor J Biol Chem 1997 272: 32686–32695.

    Article  CAS  Google Scholar 

  45. Kieffer TJ, Heller RS, Leech CA, Holz GC, Habener JF . Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic β cells Diabetes 1997 46: 1087–1093.

    Article  CAS  Google Scholar 

  46. Zhao AZ, Bornfeld KE, Beavo JA . Leptin inhibits insulin secretion by activation of phosphodiesterase 3B J Clin Invest 1998 102: 869–873.

    Article  CAS  Google Scholar 

  47. Ahren B, Havel PJ . Leptin inhibits insulin secretion induced by cellular cAMP in a pancreatic B cell line (INS-1 cells) Am J Physiol 1999 277: R959–966.

    CAS  PubMed  Google Scholar 

  48. Shimabukuro M, Koyama K, Chen G, Wang M, Trieu F, Lee Y, Newgard CB, Unger RH . Direct antidiabetic effect of leptin through triglyceride depletion of tissues Proc Natl Acad Sci USA 1997 94: 4637–4641.

    Article  CAS  Google Scholar 

  49. Unger RH, Zhou Y, Orci L . Regulation of fatty acid homeostasis in cells: novel role of leptin Proc Natl Acad Sci USA 1999 96: 2327–2332.

    Article  CAS  Google Scholar 

  50. Shimabukuro M, Koyama K, Lee Y, Unger RH . Leptin- or troglitazone-induced lipopenia protects islets from inteleukin 1β cytotoxicity J Clin Invest 1997 100: 1750–1754.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs Athina Koukourava for her valuable assistance in the insulin secretion measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Tsigos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiotra, P., Tsigos, C. & Raptis, S. TNFα and leptin inhibit basal and glucose-stimulated insulin secretion and gene transcription in the HIT-T15 pancreatic cells. Int J Obes 25, 1018–1026 (2001). https://doi.org/10.1038/sj.ijo.0801657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801657

Keywords

This article is cited by

Search

Quick links