Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Effect of Magnetisation on the Nature of Light Emitted by a Substance

IN consequence of my measurements of Kerr’s magneto-optical phenomena, the thought occurred to me whether the period of the light emitted by a flame might be altered when the flame was acted upon by magnetic force. It has turned out that such an action really occurs. I introduced into an oxyhydrogen flame, placed between the poles of a Ruhmkorff’s electromagnet, a filament of asbestos soaked in common salt. The light of the flame was examined with a Rowland’s grating. Whenever the circuit was closed both D lines were seen to widen.

Since one might attribute the widening to the known effects of the magnetic field upon the flame, which would cause an alteration in the density and temperature of the sodium vapour, I had resort to a method of experimentation which is much more free from objection.

Sodium was strongly heated in a tube of biscuit porcelain, such as Pringsheim used in his interesting investigations upon the radiations of gases. The tube was closed at both ends by plane parallel glass plates, whose effective area was 1 cm. The tube was placed horizontally between the poles, at right angles to the lines of force. The light of an arc lamp was sent through. The absorption spectrum showed both D lines. The tube was continuously rotated round its axis to avoid temperature variations. Excitation of the magnet caused immediate widening of the lines. It thus appears very probable that the period of sodium light is altered in the magnetic field. It is remarkable that Faraday, as early as 1862, had made the first recorded experiment in this direction, with the incomplete resources of that period, but with a negative result (Maxwell, "Collected Works,"vol. ii. p. 790).

It has been already stated what, in general, was the origin of my own research on the magnetisation of the lines in the spectrum. The possibility of an alteration of period was first suggested to me by the consideration of the accelerating and retarding forces between the atoms and Maxwell's molecular vortices; later came an example suggested by Lord Kelvin, of the combination of a quickly rotating system and a double pendulum. However, a true explanation appears to me to be afforded by the theory of electric phenomena propounded by Prof. Lorentz.

In this theory, it is considered that, in all bodies, there occur small molecular elements charged with electricity, and that all electrical processes are to be referred to the equilibrium or motion of these "ions."It seems to me that in the magnetic field the forces directly acting on the ions suffice for the explanation of the phenomena.

Prof. Lorentz, to whom I communicated my idea, was good enough to show me how the motion of the ions might be calculated, and further suggested that if my application of the theory be correct there would follow these further consequences: that the light from the edges of the widened lines should be circularly polarised when the directionjof vision lay along the lines of force; further, that the magnitude of the effect would lead to the determination of the ratio of the electric charge the ion bears to its mass. We may designate the ratio ejm. I have since found by means of a quarter-wave length plate and an analyser, that the edges of the magnetically-widened lines are really circularly polarised when the line of sight coincides in direction with the lines of force. An altogether rough measurement gives ior as the order of magnitude of the ratio ejm when e is expressed in electromagnetic units.

On the contrary, if one looks at the flame in a direction at right angles to the lines OP force, then the edges of the broadened sodium lines appear plane polarised, in accordance with theory. Thus there is here direct evidence of the existence of ions.

This investigation was conducted in the Physical Institute of Leyden University, and will shortly appear in the "Communications of the Leyden University."

I return my best thanks to Prof. K. Onnes for the in terest he has shown in my work.

1 Translated by Arthur Stanton from the Proceedings of the Physical Society of Berlin.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

ZEEMAN, P. The Effect of Magnetisation on the Nature of Light Emitted by a Substance. Nature 55, 347 (1897). https://doi.org/10.1038/055347a0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing