Editorial | Published:

The Temperature of the Solar Surface

Abstract

THE power developed by the sun motor, recorded in NATURE, vol. xxix. p. 217, has established relations between diffusion and energy of solar radiation, which prove that the temperature of the surface of the sun is extremely high. I have, therefore, during the summer solstice of 1884, carried out an experimental investigation for the purpose of demonstrating the temperature of the solar surface corresponding with the temperature transmitted to the sun motor. Referring to the illustrations previously published, it will be seen that the cylindrical heater of the sun motor, constructed solely for the purpose of generating steam or expanding air, is not well adapted for an exact determination of the amount of surface exposed to the action of the reflected solar rays. It will be perceived on inspection that only part of the bottom of the cylindrical heater of the motor is acted upon by the reflected rays, and that their density diminishes gradually towards the sides of the vessel; also that owing to the imperfections of the surface of the reflecting plates the exact course of the terminal rays cannot be defined. Consequently, the most important point in the investigation, namely, the area acted upon by the reflected radiant heat, cannot be accurately determined. I have accordingly constructed an instrument of large dimensions, a polygonal reflector (see Fig. 1), composed of a series of inclined mirrors, and provided with a central heater of conical form, acted upon by the reflected radiation in such a manner that each point of its surface receives an equal amount of radiant heat in a given time. The said reflector is contained within two regular polygonal planes twelve inches apart, each having ninety-six sides, the perimeter of the upper plane corresponding with a circle of eight feet diameter, that of the lower plane being six feet. The corresponding sides of these planes are connected by flat taper mirrors composed of thin glass silvered on the outside. When the reflector faces the sun at right angles, each mirror intercepts a pencil of rays of 32.61 square inches section, hence the entire reflecting surface receives the radiant heat of an annular sunbeam of 32.61 × 96 = 3130 square inches section. It should be observed that the area thus stated is 0.011 less than the total foreshortened superficies of the ninety-six mirrors if sufficiently wide to come in perfect contact at the vertices. Fig. 2 represents a transverse section of the instrument as it appears when facing the sun; the direct and reflected rays being indicated by dotted lines. The reflector and conical heater are sustained by a flat hub and eight radial spokes bent upwards towards the ends at an angle of 45°. The hub and spokes are supported by a vertical pivot, by means of which the operator is enabled to follow the diurnal motion of the sun, while a horizontal axle, secured to the upper end of the pivot, and held by appropriate bearings under the hub, enables him to regulate the inclination to correspond with the altitude of the luminary. The heater is composed of rolled plate iron 0.017 inch thick, and provided with head and bottom formed of non-conducting materials. By means of a screw-plug passing through the bottom and entering the face of the hub the heater may be applied and removed in the course of five minutes, an important fact, as will be seen hereafter. It is scarcely necessary to state that the proportion of the ends of the conical heater should correspond with the perimeters of the reflector, hence the diameter of the upper end, at the intersection of the polygonal plane, should be to that of the lower end as 8 to 6, in order that every part may be acted upon by reflected rays of equal density. This condition being fulfilled, the temperature communicated will be perfectly uniform. A short tube passes through the upper head of the heater, through which a thermometer is inserted for measuring the internal temperature. The stem being somewhat less than the bore of the tube, a small opening is formed by which the necessary equilibrium of pressure will be established with the external atmosphere. It should be mentioned that the indications of the thermometer during the experiment have been remarkably prompt, the bulb being subjected to the joint influence of radiation and convection.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Rights and permissions

Reprints and Permissions

About this article

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.