Nanoscale materials articles within Nature Communications

Featured

  • Article
    | Open Access

    Twisted 2D magnets provide a rich playground for potential spintronic device architectures. Here, the authors use tunneling magnetoresistance measurements to investigate the collective spin states of twisted double bilayer CrI3 in various configurations, providing evidence of non-volatile spin textures.

    • Bowen Yang
    • , Tarun Patel
    •  & Adam W. Tsen
  • Article
    | Open Access

    The robust anion framework of ionic nanocrystals impedes shape change by cation exchange. Here, the authors report an anisotropic, regenerative transformation of Cu1.8S nanoplates during cation exchange.

    • Zhanzhao Li
    • , Masaki Saruyama
    •  & Toshiharu Teranishi
  • Article
    | Open Access

    The development of methodologies to construct fast-moving, biodegradable polymeric nanomotors remains a challenge. Here, the authors present a light-propelled nanomotor by adorning the surface of bowl-shaped stomatocytes with gold nanoparticles achieving particle translocation in mammalian cells through the temporary disruption of the cell membrane.

    • Jianhong Wang
    • , Hanglong Wu
    •  & Jan C. M. van Hest
  • Article
    | Open Access

    2D semiconductors with high thermal conductivity are essential for next-generation electronics. Here, the authors report a high thermal conductivity of ~173 W·m–1 ·K–1 for monolayer MoSi2N4, surpassing the known 2D semiconductors and silicon.

    • Chengjian He
    • , Chuan Xu
    •  & Wencai Ren
  • Article
    | Open Access

    Quantum spin Hall materials hold great potential for future nanoelectronics. Here, authors synthesize a potential host system — monolayer ZrTe5 — and demonstrate it possesses a band gap wide enough for potential room-temperature applications.

    • Yong-Jie Xu
    • , Guohua Cao
    •  & Shao-Chun Li
  • Article
    | Open Access

    Transition metal perovskite oxide membranes are promising platforms for infrared polaritonics. Here, the authors experimentally demonstrate highly confined epsilon-near-zero modes and propagating surface phonon polaritons in high-quality SrTiO3 membranes with deep subwavelength thickness.

    • Ruijuan Xu
    • , Iris Crassee
    •  & Yin Liu
  • Article
    | Open Access

    Topological semimetals offer the potential for new-generation spintronic devices. Here, the authors demonstrate a large out-of-plane damping-like spin–orbit torque efficiency in a heterostructure based on the Weyl semimetal TaIrTe4.

    • Lakhan Bainsla
    • , Bing Zhao
    •  & Saroj P. Dash
  • Article
    | Open Access

    It has long been believed that diffusion as individual atoms is the primary way for carbon to enter Fe crystals from outside. Here, the authors report an unusual mass transport way in solids, through which diamond nanoparticles can enter Fe spontaneously and translate inward for a long distance.

    • Yuecun Wang
    • , Xudong Wang
    •  & Zhiwei Shan
  • Article
    | Open Access

    The authors observe THz emission from Ni/Pt heterostructure due to long-range ballistic orbital transport. The velocity of orbital current can be optically tuned by laser fluence, opening the avenue for future optorbitronic devices.

    • Sobhan Subhra Mishra
    • , James Lourembam
    •  & Ranjan Singh
  • Article
    | Open Access

    Large-scale 2D hexagonal boron nitride (hBN) grown via chemical vapour deposition (CVD) has strategic importance for various applications of 2D materials. Here, the authors analyse the structural and electrical properties of commercially available CVD hBN from 9 popular suppliers and compare the results with mechanically exfoliated hBN and in-house CVD hBN.

    • Yue Yuan
    • , Jonas Weber
    •  & Mario Lanza
  • Article
    | Open Access

    There are now several van der Waals magnets that have been shown to host skyrmions, however, these are typically hampered by a low Curie temperature, restricting the temperature at which the skyrmions can exist. Here, Zhang, Jiang, Jiang and coauthors find a skyrmion lattice in the van der Waals magnet Fe3 − xGaTe2 above room temperature and demonstrate the critical role of symmetry breaking in crystal lattice in the origin of these skyrmions.

    • Chenhui Zhang
    • , Ze Jiang
    •  & Hyunsoo Yang
  • Article
    | Open Access

    Photoluminescence from plasmonic nanostructures exhibits diverse wavelength dependent nonlinear behaviors with debated origins. Here, authors use plasmonic gap mode resonators with precise nanoscale confinement to show this nonlinear emission can become dominated by non-Fermi carrier contributions.

    • Robert Lemasters
    • , Manoj Manjare
    •  & Hayk Harutyunyan
  • Article
    | Open Access

    Electron transfer in solids is a fundamental process in many functional nanomaterials. Here, the authors directly observe this process via x-ray crystallography for incorporating of electron-donor guest molecules in macrocyclic nanotube crystals.

    • Daiji Ogata
    • , Shota Koide
    •  & Junpei Yuasa
  • Article
    | Open Access

    Here, the authors discover the ground and excited state interlayer excitons in bi- and tri-layer 2H-MoSe2 crystals which exhibit electric-field-driven hybridisation with the intralayer A excitons, showing distinct spin, layer and valley characteristics.

    • Shun Feng
    • , Aidan J. Campbell
    •  & Brian D. Gerardot
  • Article
    | Open Access

    2D AMX2 compounds (where A is a monovalent metal ion, M is a trivalent metal, and X is a chalcogen) are a family of materials with coupled ionic-electronic properties. Here, the authors report a chemical vapor deposition strategy to fabricate 20 types of 2D AMX2 flakes, exhibiting superionic conductivity or room temperature ferroelectricity.

    • Xiang Xu
    • , Yunxin Chen
    •  & Tianyou Zhai
  • Article
    | Open Access

    Two-dimensional graphene-based membranes have gained much interest, but they suffer from poor rejection for monovalent salts. Here, the authors develop an electrostatic-induced ion partitioning strategy to suppress anion-cation transmembrane co-transport, improving the desalination performance.

    • Haiguang Zhang
    • , Jiajian Xing
    •  & Xie Quan
  • Article
    | Open Access

    Understanding the microscopic variability of CMOS spin qubits is crucial for developing scalable quantum processors. Here the authors report a combined experimental and numerical study of the effect of interface roughness on variability of quantum dot spin qubits formed at the Si/SiO2 interface.

    • Jesús D. Cifuentes
    • , Tuomo Tanttu
    •  & Andre Saraiva
  • Article
    | Open Access

    Traditional scintillators face challenges in achieving fast response and avoiding afterglow. Guzelturk et al. report colloidal quantum shell heterostructures with bright multiexciton emission, enabling efficient, fast, and robust scintillation for high-resolution and high-speed X-ray imaging.

    • Burak Guzelturk
    • , Benjamin T. Diroll
    •  & Mikhail Zamkov
  • Article
    | Open Access

    The authors observe multiferroicity in a single-layer non van der Waals material, CuCrSe2. The coexistence of room-temperature ferroelectricity and ferromagnetism up to 120 K is corroborated by a set of comprehensive experimental techniques.

    • Zhenyu Sun
    • , Yueqi Su
    •  & Baojie Feng
  • Article
    | Open Access

    Control of correlated excitonic states is a key goal of modern optoelectronic physics. Here, the authors demonstrate filling- and field-tunable exciton valley-pseudospin orders in a moiré heterostructure.

    • Richen Xiong
    • , Samuel L. Brantly
    •  & Chenhao Jin
  • Article
    | Open Access

    Exploring new mechanics regime, researchers created centimeter-long, nanometer-thin resonators, achieving unmatched room temperature mechanical isolation via cutting edge nanoengineering and machine learning design; rivaling cryogenic counterparts.

    • Andrea Cupertino
    • , Dongil Shin
    •  & Richard A. Norte
  • Article
    | Open Access

    Rhombohedral-stacked (R-stacked) transition metal dichalcogenide bilayers exhibit remarkable properties, but their large-area epitaxial growth remains challenging. Here, the authors report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates.

    • Chao Chang
    • , Xiaowen Zhang
    •  & Xiaozhi Xu
  • Article
    | Open Access

    Metals often suffer from reduced strength and ductility after hydrogenation. Here, the authors show hydrogenation can lead to enhancement in strength and ductility accompanied by a large change in magnetic entropy, overcoming the bottlenecks of using amorphous alloys for magnetic refrigerants.

    • Liliang Shao
    • , Qiang Luo
    •  & Weihua Wang
  • Article
    | Open Access

    Traditional methods to incorporate polycrystalline thin film into flexible systems are often complicated and limited by their sizes. Here, the authors introduce flexible amorphous thin film energy harvester, based on perovskite oxides, on a plastic substrate for electromechanical energy harvesting.

    • Ju Han
    • , Sung Hyun Park
    •  & Yong Soo Cho
  • Article
    | Open Access

    Extending magnetic nanostructures into three dimensions offers a vast increase in potential functionalities, but this typically comes at the expense of ease of fabrication and measurement. Here, Dion et al. demonstrate an approach to creating three dimensional magnetic nanostructures while retaining easy fabrication and readout of established two dimensional approaches.

    • Troy Dion
    • , Kilian D. Stenning
    •  & Jack C. Gartside
  • Article
    | Open Access

    The relationship between the structural configurations of M-N-C electrocatalysts and their performances in neutral environments has been insufficiently investigated. Here the authors demonstrate that an ultralow metal-loaded Co-N-C electrocatalyst, featuring the asymmetric Co-C/N/O configuration, exhibit exceptional efficiency in electrochemically producing hydrogen peroxide under neutral conditions.

    • Longxiang Liu
    • , Liqun Kang
    •  & Guanjie He
  • Article
    | Open Access

    Here, the authors demonstrate a wafer-scale, low-temperature process using atomic layer deposition, for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. They further fabricate aBN-encapsulated monolayer MoS2 field-effect transistors.

    • Cindy Y. Chen
    • , Zheng Sun
    •  & Joshua A. Robinson
  • Article
    | Open Access

    Tuning the instabilities of 2D materials can control their wrinkling behavior for interesting physical properties, but still challenging. Here, the authors report a push-to-shear experimental approach to control the wrinkling patterns of monolayer 2D materials and measure their bending stiffness.

    • Yuan Hou
    • , Jingzhuo Zhou
    •  & Yang Lu
  • Article
    | Open Access

    Bristleworms possess dedicated cells that can synthesize highly stereotypical bristles with sub-micrometric precision. Here, Ikeda and colleagues shed light on the underlying dynamics of cellular protrusions, revealing an extension-disassembly cycle that resembles a 3D printer.

    • Kyojiro N. Ikeda
    • , Ilya Belevich
    •  & Florian Raible
  • Article
    | Open Access

    The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li+/Mg2+ separation performance.

    • Zongyao Zhou
    • , Kangning Zhao
    •  & Kumar Varoon Agrawal
  • Article
    | Open Access

    Carbon nanotube-based single photon emitters allow for room-temperature operation, but suffer from vanishing indistinguishability due to strong dephasing. Following a theoretical proposal, the authors tackle the problem experimentally by using a cavity to enhance the photon coherence time and the emission spectral density in the regime of incoherent good cavity-coupling.

    • Lukas Husel
    • , Julian Trapp
    •  & Alexander Högele
  • Article
    | Open Access

    Inspired by fireflies, a bimodal information indication system using a photochemical afterglow material within a photonic crystal matrix is developed to display both static and changing information, such as sample type and degree of degradation.

    • Hanwen Huang
    • , Jiamiao Yin
    •  & Changchun Wang
  • Article
    | Open Access

    Previous work proposed the Berry curvature dipole as the mechanism of the nonlinear Hall effect. Lee et al. establish the sign-changing Berry curvature hot spots from spin-orbit split bands as the origin of the Berry curvature dipole and link it to the nonlinear Hall effect in the topological semimetal NbIrTe4.

    • Ji-Eun Lee
    • , Aifeng Wang
    •  & Hyejin Ryu