Materials science articles within Nature Communications

Featured

  • Article
    | Open Access

    Rhombohedral-stacked (R-stacked) transition metal dichalcogenide bilayers exhibit remarkable properties, but their large-area epitaxial growth remains challenging. Here, the authors report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates.

    • Chao Chang
    • , Xiaowen Zhang
    •  & Xiaozhi Xu
  • Article
    | Open Access

    Traditional methods to incorporate polycrystalline thin film into flexible systems are often complicated and limited by their sizes. Here, the authors introduce flexible amorphous thin film energy harvester, based on perovskite oxides, on a plastic substrate for electromechanical energy harvesting.

    • Ju Han
    • , Sung Hyun Park
    •  & Yong Soo Cho
  • Article
    | Open Access

    The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Here, the authors report a shape-memory, tailorable, self-adaptive and bioactive silk fibroin/magnesium composite scaffold that can quickly match irregular defects by simple trimming and lead to good interface integration.

    • Zhinan Mao
    • , Xuewei Bi
    •  & Yufeng Zheng
  • Article
    | Open Access

    Metals often suffer from reduced strength and ductility after hydrogenation. Here, the authors show hydrogenation can lead to enhancement in strength and ductility accompanied by a large change in magnetic entropy, overcoming the bottlenecks of using amorphous alloys for magnetic refrigerants.

    • Liliang Shao
    • , Qiang Luo
    •  & Weihua Wang
  • Article
    | Open Access

    The principle of Le Chatelier is a fundamental concept in textbooks, serving as a guiding principle for controlling chemical and catalytic systems. In this study, the authors present an oxygen electroreduction system based on a single zinc vacancy catalyst, which operates in a manner that extends “beyond” Le Chatelier’s principle.

    • Qi Huang
    • , Baokai Xia
    •  & Sheng Chen
  • Article
    | Open Access

    Stretchable phosphorescent materials have potential in applications such as wearable electronics, but achieving a suitable balance of emission and stretchability is challenging. Here, the authors report the use of microphase separation to show stretchability with emission lifetimes maintained.

    • Nan Gan
    • , Xin Zou
    •  & Wei Huang
  • Article
    | Open Access

    Efficient organic light-emitting diodes require a multilayer architecture to confine charge recombination to the emissive layer. Here, authors demonstrate efficient single-layer devices for emitters with imbalanced charge transport without the need of additional charge transport or blocking layers.

    • Xiao Tan
    • , Dehai Dou
    •  & Gert-Jan A. H. Wetzelaer
  • Article
    | Open Access

    The relationship between the structural configurations of M-N-C electrocatalysts and their performances in neutral environments has been insufficiently investigated. Here the authors demonstrate that an ultralow metal-loaded Co-N-C electrocatalyst, featuring the asymmetric Co-C/N/O configuration, exhibit exceptional efficiency in electrochemically producing hydrogen peroxide under neutral conditions.

    • Longxiang Liu
    • , Liqun Kang
    •  & Guanjie He
  • Article
    | Open Access

    Antiferromagnetic spintronics offer high speed operations, and reduced issues with stray fields compared to ferromagnetic systems, however, antiferromagnets are typically more challenging to manipulate electrically. Here, Yang, Kim, and coauthors demonstrate electrical control of magnon dispersion and frequency in an α-Fe2O3/Pt heterostructure.

    • Dongsheng Yang
    • , Taeheon Kim
    •  & Hyunsoo Yang
  • Article
    | Open Access

    Direct recycling of critical battery materials bring promise but a challenge for the mixed cathode chemistries. Here, the authors report a sustainable upcycling approach, transforming degraded LiFePO4 and Mn-rich cathodes into a high-voltage polyanionic material with an increased energy density and economic value.

    • Guanjun Ji
    • , Di Tang
    •  & Hui-Ming Cheng
  • Article
    | Open Access

    Lead toxification in society is a public health crisis. The exposure to lead poisoning gives rise to a multitude of health issues. In this work, a chip-scale photonic platform that enables the highly quantitative detection of lead is demonstrated.

    • Luigi Ranno
    • , Yong Zen Tan
    •  & Jia Xu Brian Sia
  • Article
    | Open Access

    Here, the authors demonstrate a wafer-scale, low-temperature process using atomic layer deposition, for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. They further fabricate aBN-encapsulated monolayer MoS2 field-effect transistors.

    • Cindy Y. Chen
    • , Zheng Sun
    •  & Joshua A. Robinson
  • Article
    | Open Access

    By mimicking the strong adhesive locomotion ability of snails, the authors present a sliding suction method to allow robots to climb with high adhesive force and low energy consumption up walls and on ceilings.

    • Tianqi Yue
    • , Hermes Bloomfield-Gadêlha
    •  & Jonathan Rossiter
  • Article
    | Open Access

    Tuning the instabilities of 2D materials can control their wrinkling behavior for interesting physical properties, but still challenging. Here, the authors report a push-to-shear experimental approach to control the wrinkling patterns of monolayer 2D materials and measure their bending stiffness.

    • Yuan Hou
    • , Jingzhuo Zhou
    •  & Yang Lu
  • Article
    | Open Access

    Bristleworms possess dedicated cells that can synthesize highly stereotypical bristles with sub-micrometric precision. Here, Ikeda and colleagues shed light on the underlying dynamics of cellular protrusions, revealing an extension-disassembly cycle that resembles a 3D printer.

    • Kyojiro N. Ikeda
    • , Ilya Belevich
    •  & Florian Raible
  • Article
    | Open Access

    The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li+/Mg2+ separation performance.

    • Zongyao Zhou
    • , Kangning Zhao
    •  & Kumar Varoon Agrawal
  • Comment
    | Open Access

    Roll-to-Roll (R2R) coating is a technology that potentially enhances throughput, reduces costs, and accommodates flexible substrates for fabricating various types of solar cells and modules. Here, authors discuss the R2R revolution to tackle the industrial leap for perovskite photovoltaic devices.

    • Ershad Parvazian
    •  & Trystan Watson
  • Article
    | Open Access

    Here Pantazopoulos, Feist, García-Vidal, and Kamra explore the combination spin, phonon and photon coupling in a system of magnetic nanoparticles, and find that it leads to an emergent spin-spin interaction. This interaction is long-range and leads to an unconventional form of magnetism that can exhibit strong magnetization at temperatures very close to the critical temperature.

    • Petros Andreas Pantazopoulos
    • , Johannes Feist
    •  & Akashdeep Kamra
  • Article
    | Open Access

    The coupling between topological electronic properties and magnetic order offers a promising route for magnetoelectric control with great potential for both applications and fundamental physics. Here, Susilo et al demonstrate the rich tunability of magnetic properties in nodal-line magnetic semiconductor Mn3Si2Te6 using pressure as control knob.

    • Resta A. Susilo
    • , Chang Il Kwon
    •  & Jun Sung Kim
  • Article
    | Open Access

    Inspired by fireflies, a bimodal information indication system using a photochemical afterglow material within a photonic crystal matrix is developed to display both static and changing information, such as sample type and degree of degradation.

    • Hanwen Huang
    • , Jiamiao Yin
    •  & Changchun Wang
  • Article
    | Open Access

    Authors predict polar Bloch points with negative capacitance in tensile-strained ultrathin ferroelectric PbTiO3 film by phase-field simulations, observing their polarization structures by scanning transmission electron microscopic imaging.

    • Yu-Jia Wang
    • , Yan-Peng Feng
    •  & Xiu-Liang Ma
  • Article
    | Open Access

    Conventional material processing methods often suffer by strength-ductility trade-off. Here, the authors show high-pressure and high-temperature treatment can transform an eutectic high entropy alloy to having a hierarchical microstructure with simultaneous enhancements of strength and ductility.

    • Yao Tang
    • , Haikuo Wang
    •  & Haofei Zhou
  • Article
    | Open Access

    Previous work proposed the Berry curvature dipole as the mechanism of the nonlinear Hall effect. Lee et al. establish the sign-changing Berry curvature hot spots from spin-orbit split bands as the origin of the Berry curvature dipole and link it to the nonlinear Hall effect in the topological semimetal NbIrTe4.

    • Ji-Eun Lee
    • , Aifeng Wang
    •  & Hyejin Ryu
  • Article
    | Open Access

    Proton conduction is one of the interesting applications of hydrogen-bonded organic frameworks. Here, the authors report hydrogen-bonded organic framework that can be transformed into glassy state, effectively mitigating grain boundary effects, and significantly enhancing proton conduction performance.

    • Feng-Fan Yang
    • , Xiao-Lu Wang
    •  & Linfeng Liang
  • Article
    | Open Access

    Supramolecular polymer networks have unique and useful properties due to the reversible nature of their cross-links. Here, the authors show that when two distinct supramolecular interaction classes exist within a single cross-link, new functions can result.

    • David J. Lundberg
    • , Christopher M. Brown
    •  & Jeremiah A. Johnson
  • Article
    | Open Access

    Here, the authors show a facile and sustainable 3D printing by utilizing a reversible salting-out effect on poly(N-isopropylacrylamide) (PNIPAM) solutions. Aqueous salt solutions lower the phase transition temperature of PNIPAM solutions below 10 °C and instantly solidify the PNIPAM solutions upon contact.

    • Donghwan Ji
    • , Joseph Liu
    •  & Jinhye Bae
  • Article
    | Open Access

    Developing stable water oxidation catalysts is of great importance for proton-exchange membrane water electrolyzers. Here the authors report a bicontinuous nanoreactor composed of multiscale defected RuO2 nanocrystals for robust acidic water oxidation reactivity.

    • Ding Chen
    • , Ruohan Yu
    •  & Shichun Mu
  • Article
    | Open Access

    Here the authors identify a generic coupling in phase-separated liquids between motility and phase equilibria perturbations: phase-separated droplets swim to their dissolution. This suggests alternative transport mechanism for biomolecular condensates.

    • Etienne Jambon-Puillet
    • , Andrea Testa
    •  & Eric R. Dufresne
  • Article
    | Open Access

    Solid polymer electrolytes containing N,N-dimethylformamide (DMF) exhibit improved Li+ conductivity but poor cycle life due to incompatibility between the Li metal anode and DMF. Here, the authors report a polymer electrolyte composited with Hofmann-DMF complex that achieves both high Li+ conductivity and long cycle life.

    • Yanfei Zhu
    • , Zhoujie Lao
    •  & Guangmin Zhou
  • Article
    | Open Access

    Physicochemical heterogeneity poses a significant constraint in photocatalyst advancement. Here the authors introduce a multimodal optical microscopy platform to assess activity and defects concurrently in photoelectrocatalysts, revealing that disorder can unexpectedly enhance local photoelectrocatalytic performance in certain instances.

    • Camilo A. Mesa
    • , Michael Sachs
    •  & Raj Pandya
  • Article
    | Open Access

    The self-assembly of nanocrystals into checkerboard lattice patterns is difficult to control. Here, the authors investigate the formation of such patterns from hydrophilic/hydrophobic bifunctionalized Ag nanocubes and use multiscale simulations to understand the effects of physical forces.

    • Yufei Wang
    • , Yilong Zhou
    •  & Andrea R. Tao
  • Article
    | Open Access

    Strategies to produce supramolecular glass and the study of its intrinsic structure and mechanical properties remains largely unexplored. Here, the authors prepare a supramolecular glass via the host–guest recognition between methyl-β-cyclodextrin and para-hydroxybenzoic acid with recyclability, compatibility, and thermal processability.

    • Changyong Cai
    • , Shuanggen Wu
    •  & Shengyi Dong
  • Article
    | Open Access

    The synthesis of covalent organic frameworks (COFs) by a soft-template methodology is challenging. Here, the authors attach the soft templates to the COFs backbone via ion bonds, avoiding crystallization incompatibilities and allowing subsequent removal of the template by ion exchange for enhanced U(VI)/Th(IV) adsorption performance.

    • Ningning He
    • , Yingdi Zou
    •  & Lijian Ma
  • Article
    | Open Access

    The authors study a YbCoIn5/CeCoIn5/YbRhIn5 heterostructure. Using non-reciprocity in the second harmonic transport response, they demonstrate the existence of a specific form of finite-momentum pairing called a helical superconducting state, where the phase of the order parameter is spontaneously spatially modulated.

    • T. Asaba
    • , M. Naritsuka
    •  & Y. Matsuda
  • Article
    | Open Access

    Dual wavelength vat photopolymerization has emerged as a powerful approach to create multimaterial objects but require changing the resin during the printing process. Here, the authors develop a method of dual-wavelength 3D printing that can directly access multicolor parts without requiring changing of resin feedstocks or introduction of new materials during the printing process.

    • Kyle C. H. Chin
    • , Grant Ovsepyan
    •  & Andrew J. Boydston
  • Article
    | Open Access

    Granular materials exhibit yielding behaviors rather different from glasses that can be elastic. Here, Yuan et al. show a cross-over from creep to diffusive dynamics in three-dimensional granular systems under cyclic shear and that the relaxation process depends on the roughness of the constituent particles.

    • Ye Yuan
    • , Zhikun Zeng
    •  & Yujie Wang
  • Review Article
    | Open Access

    The knowledge gained from industrial catalysis benefits advancements of nanocatalytic medicines. Here the authors review the similarities, differences and connections in catalytic reactions between industrial and medical applications to support deep understanding and rational design of nanocatalytic medicines.

    • Zhaokui Jin
    • , Lingdong Jiang
    •  & Qianjun He