Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Treatment of pulmonary metastatic tumors in mice using lentiviral vector-engineered stem cells

Abstract

Active cancer immunotherapy relies on functional tumor-specific effector T lymphocytes for tumor elimination. Dendritic cells (DCs), as most potent antigen-presenting cells, have been popularly employed in clinical and experimental tumor treatments. We have previously demonstrated that lentiviral vector-mediated transgene delivery to DC progenitors, including bone marrow cells and hematopoietic stem cells, followed by transplantation supports systemic generation of great numbers of tumor antigen-presenting DCs. These DCs subsequently stimulate marked and systemic immune activation. Here, we examined whether this level of immune activation is sufficient to overcome tumor-induced tolerogenic environment for treating an established aggressive epithelial tumor. We showed that a combination treatment of granulocyte macrophage-colony stimulating factor and cytosine-phosphate-guanine-containing oligonucleotide stimulated large numbers of tumor antigen-presenting DCs in situ from transgene-modified stem cells. Moreover, these in situ generated and activated DCs markedly stimulated activation of antigen-specific CD4 and CD8 T cells by augmenting their numbers, as well as function, even in a tumor-bearing tolerogenic environment. This leads to significant improvement in the therapeutic efficacy of established pulmonary metastases. This study suggests that lentiviral vector-modified stem cells as DC progenitors may be used as an effective therapeutic regimen for treating metastatic epithelial tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Finn OJ . Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003; 3: 630–641.

    Article  CAS  PubMed  Google Scholar 

  2. Pardoll D . Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003; 21: 807–839.

    Article  CAS  PubMed  Google Scholar 

  3. Powell Jr DJ, Dudley ME, Hogan KA, Wunderlich JR, Rosenberg SA . Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion. J Immunol 2006; 177: 6527–6539.

    Article  CAS  PubMed  Google Scholar 

  4. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 18538–18543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003; 348: 203–213.

    Article  CAS  PubMed  Google Scholar 

  6. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  7. Cuenca A, Cheng F, Wang H, Brayer J, Horna P, Gu L et al. Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res 2003; 63: 9007–9015.

    CAS  PubMed  Google Scholar 

  8. O'Neill D W, Adams S, Bhardwaj N . Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 2004; 104: 2235–2246.

    Article  PubMed  Google Scholar 

  9. Banchereau J, Paczesny S, Blanco P, Bennett L, Pascual V, Fay J et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann NY Acad Sci 2003; 987: 180–187.

    Article  CAS  PubMed  Google Scholar 

  10. Baggers J, Ratzinger G, Young JW . Dendritic cells as immunologic adjuvants for the treatment of cancer. J Clin Oncol 2000; 18: 3879–3882.

    Article  CAS  PubMed  Google Scholar 

  11. Wang HY, Fu T, Wang G, Zeng G, Perry-Lalley DM, Yang JC et al. Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells. J Clin Invest 2002; 109: 1463–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002; 99: 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  13. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18: 245–273.

    Article  CAS  PubMed  Google Scholar 

  14. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Merad M, Sugie T, Engleman EG, Fong L . In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 2002; 99: 1676–1682.

    Article  CAS  PubMed  Google Scholar 

  16. Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, Levy F et al. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 2003; 111: 1673–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cui Y, Kelleher E, Straley E, Fuchs E, Gorski K, Levitsky H et al. Immunotherapy of established tumors using bone marrow transplantation with antigen gene–modified hematopoietic stem cells. Nat Med 2003; 9: 952–958.

    Article  CAS  PubMed  Google Scholar 

  18. Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 1999; 5: 774–779.

    Article  CAS  PubMed  Google Scholar 

  19. Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, Lu Z et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 1999; 5: 780–787.

    Article  CAS  PubMed  Google Scholar 

  20. Borrello I, Pardoll D . GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev 2002; 13: 185–193.

    Article  CAS  PubMed  Google Scholar 

  21. Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001; 19: 145–156.

    Article  CAS  PubMed  Google Scholar 

  22. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 1999; 59: 3340–3345.

    CAS  PubMed  Google Scholar 

  23. Eggert AA, van der Voort R, Torensma R, Moulin V, Boerman OC, Oyen WJ et al. Analysis of dendritic cell trafficking using EGFP-transgenic mice. Immunol Lett 2003; 89: 17–24.

    Article  CAS  PubMed  Google Scholar 

  24. Cayeux S, Richter G, Becker C, Pezzutto A, Dorken B, Blankenstein T . Direct and indirect T cell priming by dendritic cell vaccines. Eur J Immunol 1999; 29: 225–234.

    Article  CAS  PubMed  Google Scholar 

  25. Ruedl C, Koebel P, Bachmann M, Hess M, Karjalainen K . Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol 2000; 165: 4910–4916.

    Article  CAS  PubMed  Google Scholar 

  26. Cui Y, Golob J, Kelleher E, Ye Z, Pardoll D, Cheng L . Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 2002; 99: 399–408.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao P, Liu W, Cui Y . Rapid immune reconstitution and dendritic cell engraftment post-bone marrow transplantation with heterogeneous progenitors and GM-CSF treatment. Exp Hematol 2006; 34: 951–964.

    Article  CAS  PubMed  Google Scholar 

  28. Trono D . Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Therapy 2000; 7: 20–23.

    Article  CAS  PubMed  Google Scholar 

  29. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE . Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 682–686.

    Article  CAS  PubMed  Google Scholar 

  30. Case SS, Price MA, Jordan CT, Yu XJ, Wang L, Bauer G et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 1999; 96: 2988–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borrello I, Sotomayor EM, Cooke S, Levitsky HI . A universal granulocyte-macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines. Hum Gene Ther 1999; 10: 1983–1991.

    Article  CAS  PubMed  Google Scholar 

  32. Chen K, Chen L, Zhao P, Marrero L, Keoshkerian E, Ramsay A et al. FL-CTL assay: fluorolysometric determination of cell-mediated cytotoxicity using green fluorescent protein and red fluorescent protein expressing target cells. J Immunol Methods 2005; 300: 100–114.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou G, Lu Z, McCadden JD, Levitsky HI, Marson AL . Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med 2004; 200: 1581–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blazar BR, Krieg AM, Taylor PA . Synthetic unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides are potent stimulators of antileukemia responses in naive and bone marrow transplant recipients. Blood 2001; 98: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  35. Atkins H, Davies BR, Kirby JA, Kelly JD . Polarisation of a T-helper cell immune response by activation of dendritic cells with CpG-containing oligonucleotides: a potential therapeutic regime for bladder cancer immunotherapy. Br J Cancer 2003; 89: 2312–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Huang CT, Huang X, Pardoll DM . Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 2004; 5: 508–515.

    Article  CAS  PubMed  Google Scholar 

  37. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003; 21: 759–806.

    Article  CAS  PubMed  Google Scholar 

  38. Storb RF, Champlin R, Riddell SR, Murata M, Bryant S, Warren EH . Non-myeloablative transplants for malignant disease. Hematology (Am Soc Hematol Educ Program) 2001; 1: 375–391.

    Article  Google Scholar 

  39. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 2002; 110: 185–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu HM, Poehlein CH, Urba WJ, Fox BA . Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res 2002; 62: 3914–3919.

    CAS  PubMed  Google Scholar 

  41. Zou W . Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274.

    Article  CAS  PubMed  Google Scholar 

  42. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  43. Down JD, White-Scharf ME . Reprogramming immune responses: enabling cellular therapies and regenerative medicine. Stem Cells 2003; 21: 21–32.

    Article  CAS  PubMed  Google Scholar 

  44. Anderson Jr LD, Savary CA, Mullen CA . Immunization of allogeneic bone marrow transplant recipients with tumor cell vaccines enhances graft-versus-tumor activity without exacerbating graft-versus-host disease. Blood 2000; 95: 2426–2433.

    CAS  PubMed  Google Scholar 

  45. Saccardi R, Mancardi GL, Solari A, Bosi A, Bruzzi P, Di Bartolomeo P et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood 2005; 105: 2601–2607.

    Article  CAS  PubMed  Google Scholar 

  46. Hanson HL, Kang SS, Norian LA, Matsui K, O'Mara LA, Allen PM . CD4-directed peptide vaccination augments an antitumor response, but efficacy is limited by the number of CD8+ T cell precursors. J Immunol 2004; 172: 4215–4224.

    Article  CAS  PubMed  Google Scholar 

  47. Daro E, Pulendran B, Brasel K, Teepe M, Pettit D, Lynch DH et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000; 165: 49–58.

    Article  CAS  PubMed  Google Scholar 

  48. Basak SK, Harui A, Stolina M, Sharma S, Mitani K, Dubinett SM et al. Increased dendritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 2002; 99: 2869–2879.

    Article  CAS  PubMed  Google Scholar 

  49. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 1996; 184: 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  50. Levitsky HI . Augmentation of host immune responses to cancer: overcoming the barrier of tumor antigen-specific T-cell tolerance. Cancer J 2000; 6 (Suppl 3): S281–290.

    PubMed  Google Scholar 

  51. Luznik L, Slansky JE, Jalla S, Borrello I, Levitsky HI, Pardoll DM et al. Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood 2003; 101: 1645–1652.

    Article  CAS  PubMed  Google Scholar 

  52. Emens LA, Armstrong D, Biedrzycki B, Davidson N, Davis-Sproul J, Fetting J et al. A phase I vaccine safety and chemotherapy dose-finding trial of an allogeneic GM-CSF-secreting breast cancer vaccine given in a specifically timed sequence with immunomodulatory doses of cyclophosphamide and doxorubicin. Hum Gene Ther 2004; 15: 313–337.

    Article  PubMed  Google Scholar 

  53. Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E . Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 2006; 55: 672–683.

    Article  CAS  PubMed  Google Scholar 

  54. Okazaki T, Honjo T . The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 2006; 27: 195–201.

    Article  CAS  PubMed  Google Scholar 

  55. Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 2007; 13: 1757–1761.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Jennifer Aguirre and Jennifer Simkin for technical assistance in immunohistochemistry staining and image acquisition. This research was supported by funds from Louisiana Gene Therapy Consortium, Stanley S Scott Cancer Center and grants from the Susan Komen Breast Cancer Foundation and National Institutes of Health to YC (CA112065 and P20RR021970). Gina Washington was supported by an NCI summer student scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhao, P., Kennedy, C. et al. Treatment of pulmonary metastatic tumors in mice using lentiviral vector-engineered stem cells. Cancer Gene Ther 15, 73–84 (2008). https://doi.org/10.1038/sj.cgt.7701108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701108

Keywords

This article is cited by

Search

Quick links