Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a clade C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4 polyreactivity

Abstract

Strategies to combat HIV-1 require structural knowledge of envelope proteins from viruses in HIV-1 clade C, the most rapidly spreading subtype in the world. We present a crystal structure containing a clade C gp120 envelope. The structure, a complex between gp120, the host receptor CD4 and the CD4-induced antibody 21c, reveals that the 21c epitope involves contacts with gp120, a nonself antigen, and with CD4, an autoantigen. Binding studies using wild-type and mutant CD4 show that 21c Fab binds CD4 in the absence of gp120, and that binding of 21c to clade C and HIV-2 gp120s requires the crystallographically observed 21c-CD4 interaction. Additional binding data suggest a role for the gp120 V1V2 loop in creating a high-affinity, but slow-forming, epitope for 21c after CD4 binds. These results contribute to a molecular understanding of CD4-induced antibodies and provide the first visualization to our knowledge of a potentially autoreactive antibody Fab complexed with both self and nonself antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of CAP210–sCD4–21c and comparison with other gp120–sCD4–CD4i-Fab complexes.
Figure 2: sCD4 interactions.
Figure 3: Comparison of CAP210 gp120 with clade B gp120 structures.
Figure 4: Contact surfaces on 21c, sCD4 and gp120.
Figure 5: 21c interactions with sCD4 and gp120s.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Joint United Nations Programme on HIV/AIDS (UNAIDS). 2008 Report on the Global AIDS Epidemic. (2008). <http://www.unaids.org>

  2. McCutchan, F.E. Understanding the genetic diversity of HIV-1. AIDS 14 Suppl 3, S31–S44 (2000).

  3. Huang, C.C. et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317, 1930–1934 (2007).

    Article  CAS  Google Scholar 

  4. Huang, C.C. et al. Structure of a V3-containing HIV-1 gp120 core. Science 310, 1025–1028 (2005).

    Article  CAS  Google Scholar 

  5. Kwong, P.D. et al. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8, 1329–1339 (2000).

    Article  CAS  Google Scholar 

  6. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    Article  CAS  Google Scholar 

  7. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).

    Article  CAS  Google Scholar 

  8. Chen, L. et al. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326, 1123–1127 (2009).

    Article  CAS  Google Scholar 

  9. Chen, B. et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433, 834–841 (2005).

    Article  CAS  Google Scholar 

  10. DeVico, A.L. CD4-induced epitopes in the HIV envelope glycoprotein, gp120. Curr. HIV Res. 5, 561–571 (2007).

    Article  CAS  Google Scholar 

  11. Labrijn, A.F. et al. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J. Virol. 77, 10557–10565 (2003).

    Article  CAS  Google Scholar 

  12. Xiang, S.H., Doka, N., Choudhary, R.K., Sodroski, J. & Robinson, J.E. Characterization of CD4-induced epitopes on the HIV type 1 gp120 envelope glycoprotein recognized by neutralizing human monoclonal antibodies. AIDS Res. Hum. Retroviruses 18, 1207–1217 (2002).

    Article  CAS  Google Scholar 

  13. Decker, J.M. et al. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J. Exp. Med. 201, 1407–1419 (2005).

    Article  CAS  Google Scholar 

  14. Li, M. et al. Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in Southern Africa. J. Virol. 80, 11776–11790 (2006).

    Article  CAS  Google Scholar 

  15. Balzarini, J. et al. Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV GP120: a new therapeutic concept to hit the achilles heel of HIV. J. Biol. Chem. 280, 41005–41014 (2005).

    Article  CAS  Google Scholar 

  16. Wu, X. et al. Mechanism of human immunodeficiency virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment. J. Virol. 83, 10892–10907 (2009).

    Article  CAS  Google Scholar 

  17. Saunders, C.J. et al. The V1, V2, and V3 regions of the human immunodeficiency virus type 1 envelope differentially affect the viral phenotype in an isolate-dependent manner. J. Virol. 79, 9069–9080 (2005).

    Article  CAS  Google Scholar 

  18. Hartley, O., Klasse, P.J., Sattentau, Q.J. & Moore, J.P. V3: HIV's switch-hitter. AIDS Res. Hum. Retroviruses 21, 171–189 (2005).

    Article  CAS  Google Scholar 

  19. Kowalski, M. et al. Antibodies to CD4 in individuals infected with human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 86, 3346–3350 (1989).

    Article  CAS  Google Scholar 

  20. Chams, V., Jouault, T., Fenouillet, E., Gluckman, J.C. & Klatzmann, D. Detection of anti-CD4 autoantibodies in the sera of HIV-infected patients using recombinant soluble CD4 molecules. AIDS 2, 353–361 (1988).

    Article  CAS  Google Scholar 

  21. Denisova, G. et al. Characterization of new monoclonal antibodies that discriminate between soluble and membrane CD4 and compete with human anti-CD4 autoimmune sera. Mol. Immunol. 40, 231–239 (2003).

    Article  CAS  Google Scholar 

  22. Haynes, B.F. et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308, 1906–1908 (2005).

    Article  CAS  Google Scholar 

  23. Cardoso, R.M. et al. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22, 163–173 (2005).

    Article  CAS  Google Scholar 

  24. Ofek, G. et al. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol. 78, 10724–10737 (2004).

    Article  CAS  Google Scholar 

  25. Alam, S.M. et al. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc. Natl. Acad. Sci. USA 106, 20234–20239 (2009).

    Article  CAS  Google Scholar 

  26. Xu, H. et al. Interactions between lipids and human anti-HIV antibody 4E10 can be reduced without ablating neutralizing activity. J. Virol. 84, 1076–1088 (2010).

    Article  CAS  Google Scholar 

  27. Verkoczy, L. et al. Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc. Natl. Acad. Sci. USA 107, 181–186 (2010).

    Article  CAS  Google Scholar 

  28. West, A.P. Jr . et al. Evaluation of CD4–CD4i antibody architectures yields potent, broadly cross-reactive anti-HIV reagents. J. Virol. 84, 261–269 (2009).

    Article  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  30. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  31. Schmiedel, J., Blaukat, A., Li, S., Knochel, T. & Ferguson, K.M. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 13, 365–373 (2008).

    Article  CAS  Google Scholar 

  32. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  Google Scholar 

  33. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  34. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  35. Leslie, A.G.W. Joint CCP4 and ESF-EAMCB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, UK, 1992).

    Google Scholar 

  36. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  37. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  Google Scholar 

  38. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  39. Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  40. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

Download references

Acknowledgements

We thank R. Strong for suggesting the sCD4 mutant experiments, I. Nangiana and the Caltech Protein Expression Center for expressing proteins in insect cells, Y. Wu for testing for tyrosine sulfation on 21c, R. Galimidi and M. Politzer for technical assistance, M. Murphy for help with figures, and D. Baltimore, L. Stamatatos and A. West for critical reading of the manuscript. This work was supported by a fellowship from the European Molecular Biology Organization (R.D.), a Collaboration for AIDS Vaccine Discovery (CAVD) grant with support from the Bill & Melinda Gates Foundation (Grant 38660; PI: L. Stamatatos) (P.J.B.), and the Molecular Observatory at Caltech supported by the Gordon and Betty Moore Foundation. Operations at Stanford Synchrotron Radiation Lightsource are supported by the US Department of Energy and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

R.D. designed and performed crystallographic and binding experiments; P.M.M. produced Fabs; P.J.B. oversaw the project.

Corresponding author

Correspondence to Pamela J Bjorkman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diskin, R., Marcovecchio, P. & Bjorkman, P. Structure of a clade C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4 polyreactivity. Nat Struct Mol Biol 17, 608–613 (2010). https://doi.org/10.1038/nsmb.1796

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1796

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing