Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What's taking so long? S-phase entry from quiescence versus proliferation

Abstract

There is a short window in the mammalian cell cycle during which cells can respond to extracellular cues by withdrawing temporarily from the cell cycle. When these cells re-enter the cell cycle, they require several extra hours in the G1 phase before they replicate their DNA compared with their cycling counterparts. More than 20 years after this initial observation, we still do not understand what is taking so long.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progression through the mammalian cell cycle.
Figure 2: Retinoblastoma protein and cell-cycle progression.
Figure 3: The CDC6 on/off-chromatin model.

Similar content being viewed by others

References

  1. Pardee, A. B. A restriction point for control of normal animal cell proliferation. Proc. Natl Acad. Sci. USA 71, 1286–1290 (1974).

    Article  CAS  Google Scholar 

  2. Planas-Silva, M. D. & Weinberg, R. A. The restriction point and control of cell proliferation. Curr. Opin. Cell Biol. 9, 768–772 (1997).

    Article  CAS  Google Scholar 

  3. Smith, J. A. & Martin, L. Do cells cycle? Proc. Natl Acad. Sci. USA 70, 1263–1267 (1973).

    Article  CAS  Google Scholar 

  4. Martin, R. G. & Stein, S. Resting state in normal and simian virus 40 transformed Chinese hamster lung cells. Proc. Natl Acad. Sci. USA 73, 1655–1659 (1976).

    Article  CAS  Google Scholar 

  5. Zetterberg, A. & Larsson, O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl Acad. Sci. USA 82, 5365–5369 (1985).

    Article  CAS  Google Scholar 

  6. Lajtha, L. G. On the concept of the cell cycle. J. Cell Physiol. 62 (Suppl. 1), 143–145 (1963).

    Google Scholar 

  7. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  Google Scholar 

  8. Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R. & Pouyssegur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996).

    Article  CAS  Google Scholar 

  9. Aktas, H., Cai, H. & Cooper, G. M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell. Biol. 17, 3850–3857 (1997).

    Article  CAS  Google Scholar 

  10. Kerkhoff, E. & Rapp, U. R. Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol. Cell. Biol. 17, 2576–2586 (1997).

    Article  CAS  Google Scholar 

  11. Cheng, M., Sexl, V., Sherr, C. J. & Roussel, M. F. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl Acad. Sci. USA 95, 1091–1096 (1998).

    Article  CAS  Google Scholar 

  12. Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999).

    Article  CAS  Google Scholar 

  13. DeGregori, J., Kowalik, T. & Nevins, J. R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 15, 4215–4224 (1995).

    Article  CAS  Google Scholar 

  14. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  15. Owen, T. A., Soprano, D. R. & Soprano, K. J. Analysis of the growth factor requirements for stimulation of WI-38 cells after extended periods of density-dependent growth arrest. J. Cell Physiol. 139, 424–431 (1989).

    Article  CAS  Google Scholar 

  16. Blow, J. J. & Dutta, A. Preventing re-replication of chromosomal DNA. Nature Rev. Mol. Cell Biol. 6, 476–486 (2005).

    Article  CAS  Google Scholar 

  17. Stoeber, K. et al. DNA replication licensing and human cell proliferation. J. Cell Sci. 114, 2027–2041 (2001).

    CAS  PubMed  Google Scholar 

  18. Eward, K. L. et al. DNA replication licensing in somatic and germ cells. J. Cell Sci. 117, 5875–5886 (2004).

    Article  CAS  Google Scholar 

  19. Kingsbury, S. R. et al. Repression of DNA replication licensing in quiescence is independent of geminin and may define the cell cycle state of progenitor cells. Exp. Cell Res. 309, 56–67 (2005).

    Article  CAS  Google Scholar 

  20. Jiang, W., Wells, N. J. & Hunter, T. Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc. Natl Acad. Sci. USA 96, 6193–6198 (1999).

    Article  CAS  Google Scholar 

  21. Mailand, N. & Diffley, J. F. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122, 915–926 (2005).

    Article  CAS  Google Scholar 

  22. Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).

    Article  Google Scholar 

  23. Arias, E. E. & Walter, J. C. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497–518 (2007).

    Article  CAS  Google Scholar 

  24. Stoeber, K. et al. Cdc6 protein causes premature entry into S phase in a mammalian cell-free system. EMBO J. 17, 7219–7229 (1998).

    Article  CAS  Google Scholar 

  25. Madine, M. A. et al. The roles of the MCM, ORC, and Cdc6 proteins in determining the replication competence of chromatin in quiescent cells. J. Struct. Biol. 129, 198–210 (2000).

    Article  CAS  Google Scholar 

  26. Priori, L. & Ubezio, P. Mathematical modelling and computer simulation of cell synchrony. Methods Cell Sci. 18, 83–91 (1996).

    Article  Google Scholar 

  27. Zhu, W., Giangrande, P. H. & Nevins, J. R. E2Fs link the control of G1/S and G2/M transcription. EMBO J. 23, 4615–4626 (2004).

    Article  CAS  Google Scholar 

  28. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396–410 (1999).

    Article  CAS  Google Scholar 

  29. Elsasser, S., Chi, Y., Yang, P. & Campbell, J. L. Phosphorylation controls timing of Cdc6p destruction: a biochemical analysis. Mol. Biol. Cell 10, 3263–3677 (1999).

    Article  CAS  Google Scholar 

  30. Sanchez, M., Calzada, A. & Bueno, A. The Cdc6 protein is ubiquitinated in vivo for proteolysis in Saccharomyces cerevisiae. J. Biol. Chem. 274, 9092–9097 (1999).

    Article  CAS  Google Scholar 

  31. Drury, L. S., Perkins, G. & Diffley, J. F. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16, 5966–5976 (1997).

    Article  CAS  Google Scholar 

  32. Wirth, K. G. et al. Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation. Genes Dev. 18, 88–98 (2004).

    Article  CAS  Google Scholar 

  33. Coverley, D., Laman, H. & Laskey, R. A. Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nature Cell Biol. 4, 523–528 (2002).

    Article  CAS  Google Scholar 

  34. Geng, Y. et al. Cyclin E ablation in the mouse. Cell 114, 431–443 (2003).

    Article  CAS  Google Scholar 

  35. Geng, Y. et al. Kinase-independent function of cyclin E. Mol. Cell 25, 127–139 (2007).

    Article  CAS  Google Scholar 

  36. Mendelsohn, M. L. Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. III. The growth fraction. J. Natl Cancer Inst. 28, 1015–1029 (1962).

    CAS  PubMed  Google Scholar 

  37. Pardee, A. B. A restriction point for control of normal animal cell proliferation. Proc. Natl Acad. Sci. USA 71, 1286–1290 (1974).

    Article  CAS  Google Scholar 

  38. Baserga, R., Costlow, M. & Rovera, G. Changes in membrane function and chromatin template activity in diploid and transformed cells in culture. Fed. Proc. 32, 2115–2118 (1973).

    CAS  PubMed  Google Scholar 

  39. Burstin, S. J., Meiss, H. K. & Basilico, C. A temperature-sensitive cell cycle mutant of the BHK cell line. J. Cell Physiol. 84, 397–408 (1974).

    Article  CAS  Google Scholar 

  40. Schneider, C., King, R. M. & Philipson, L. Genes specifically expressed at growth arrest of mammalian cells. Cell 54, 787–793 (1988).

    Article  CAS  Google Scholar 

  41. Coppock, D. L., Kopman, C., Scandalis, S. & Gilleran, S. Preferential gene expression in quiescent human lung fibroblasts. Cell Growth Differ. 4, 483–493 (1993).

    CAS  PubMed  Google Scholar 

  42. Polyak, K. et al. p27Kip1, a cyclin–Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.A.C. is the Milton E. Cassel scholar of the Rita Allen Foundation. She is grateful to L. Fischer, L. Kruglyak and A. Legesse-Miller for helpful comments.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Hilary A. Coller's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coller, H. What's taking so long? S-phase entry from quiescence versus proliferation. Nat Rev Mol Cell Biol 8, 667–670 (2007). https://doi.org/10.1038/nrm2223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing