Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clues to the functions of mammalian sleep

Abstract

The functions of mammalian sleep remain unclear. Most theories suggest a role for non-rapid eye movement (NREM) sleep in energy conservation and in nervous system recuperation. Theories of REM sleep have suggested a role for this state in periodic brain activation during sleep, in localized recuperative processes and in emotional regulation. Across mammals, the amount and nature of sleep are correlated with age, body size and ecological variables, such as whether the animals live in a terrestrial or an aquatic environment, their diet and the safety of their sleeping site. Sleep may be an efficient time for the completion of a number of functions, but variations in sleep expression indicate that these functions may differ across species.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of some key sleep-regulating neuronal populations plotted on a sagittal section of a rat brain97.
Figure 2: Sleep time in mammals.
Figure 3: Unihemispheric slow waves in cetaceans.
Figure 4: Size of the neocortex does not correlate positively with daily sleep amount.

References

  1. Dinges, D. F., Rogers, N. L. & Baynard, M. D. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W. C.) 67–76 (Elsevier Saunders, Philadelphia, 2005).

  2. Huber, R. et al. Sleep homeostasis in Drosophila melanogaster. Sleep 27, 628–639 (2004).

    PubMed  Google Scholar 

  3. Czeisler, C. A., Buxton, O. & Khalsa, S. B. S. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W. C.) 375–394 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  4. Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Rev. Genet. 6, 554–556 (2005).

    Google Scholar 

  5. Everson, C. A., Smith, C. B. & Sokoloff, L. Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J. Neurosci. 14, 6769–6778 (1994).

    CAS  PubMed  Google Scholar 

  6. Nofzinger, E. A. et al. Functional neuroimaging evidence for hyperarousal in insomnia. Am. J. Psychiatry 161, 2126–2128 (2004).

    PubMed  Google Scholar 

  7. Maquet, P. et al. Regional organisation of brain activity during paradoxical sleep (PS). Arch. Ital. Biol. 142, 413–419 (2004).

    CAS  PubMed  Google Scholar 

  8. Rechtschaffen, A. Current perspectives on the function of sleep. Perspect. Biol. Med. 41, 359–390 (1998).

    CAS  PubMed  Google Scholar 

  9. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).

    ADS  CAS  PubMed  Google Scholar 

  10. Kume, K., Kume, S., Park, S. K., Hirsh, J. & Jackson, F. R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005).

    CAS  PubMed  Google Scholar 

  11. Kryger, M. H., Roth, T. & Dement, W. C. Principles and Practice of Sleep Medicine (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  12. McGinty, D. J. & Szymusiak, R. S. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W .C.) 169–184 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  13. Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).

    CAS  PubMed  Google Scholar 

  14. Siegel, J. M. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W. C.) 120–135 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  15. Heller, H. C. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W. C.) 292–304 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  16. Coleman, C. G., Lydic, R. & Baghdoyan, H. A. M2 muscarinic receptors in pontine reticular formation of C57BL/6J mouse contribute to rapid eye movement sleep generation. Neuroscience 126, 821–830 (2004).

    CAS  PubMed  Google Scholar 

  17. Jouvet, M., Buda, C., Debilly, G., Dittmar, A. & Sastre, J. P. Glycine immunoreactive neurons in the medulla oblongata in cat. C. R. Acad. Sci. III 306, 69–73 (1988).

    CAS  PubMed  Google Scholar 

  18. Steriade, M. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W. C.) 101–119 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  19. Chase, M. H. & Morales, F. R. in Principles of Sleep Medicine Vol. 4 (eds Kryger, M.H., Roth, T. & Dement, W. C.) 154–168 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  20. Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J.Neurosci. 1, 876–886 (1981).

    CAS  PubMed  Google Scholar 

  21. Jacobs, B. L. & Azmitia, E. C. Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229 (1992).

    CAS  PubMed  Google Scholar 

  22. McGinty, D. J. & Harper, R. M. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 101, 569–575 (1976).

    CAS  PubMed  Google Scholar 

  23. Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787–798 (2005).

    CAS  PubMed  Google Scholar 

  24. John, J., Wu, M.-F., Boehmer, L. N. & Siegel, J. M. Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42, 619–634 (2004).

    CAS  PubMed  Google Scholar 

  25. Zepelin, H., Siegel, J. M. & Tobler, I. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W. C.) 91–100 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  26. Grutzner, F. et al. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917 (2004).

    ADS  PubMed  Google Scholar 

  27. Allison, T. & Van Twyver, H. Electrophysiological studies of the echidna, Tachyglossus aculeatus. II. Dormancy and hibernation. Arch. Ital. Biol. 110, 145–184 (1972).

    CAS  PubMed  Google Scholar 

  28. Siegel, J. M., Manger, P., Nienhuis, R., Fahringer, H. M. & Pettigrew, J. The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implications for the evolution of sleep. J. Neurosci. 16, 3500–3506 (1996).

    CAS  PubMed  Google Scholar 

  29. Siegel, J. M. et al. Sleep in the platypus. Neuroscience 91, 391–400 (1999).

    CAS  PubMed  Google Scholar 

  30. Mukhametov, L. M., Supin, A. Y. & Polyakova, I. G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res. 134, 581–584 (1977).

    CAS  PubMed  Google Scholar 

  31. Lyamin, O. I., Mukhametov, L. M. & Siegel, J. M. Relationship between sleep and eye state in Cetaceans and Pinnipeds. Arch. Ital. Biol. 142, 557–568 (2004).

    CAS  PubMed  Google Scholar 

  32. Mukhametov, L. M., Lyamin, O. I., Chetyrbok, I. S., Vassilyev, A. A. & Diaz, R. P. Sleep in an Amazonian manatee, Trichechus inunguis. Experientia 48, 417–419 (1992).

    CAS  PubMed  Google Scholar 

  33. Mukhametov, L. M., Lyamin, O. I., Shpak, O. V., Manger, P. & Siegel, J. M. Swimming styles and their relationship to rest and activity states in captive Commerson's dolphins. Proc. 14th Biennial Conference on the Biology of Marine Mammals 152 (2002).

  34. Vanderwolf, C. H. & Baker, G. B. Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res. 374, 342–356 (1986).

    CAS  PubMed  Google Scholar 

  35. Bergmann, B. M., Winter, J. B., Rosenberg, R. S. & Rechtschaffen, A. NREM sleep with low-voltage EEG in the rat. Sleep 10, 1–11 (1987).

    CAS  PubMed  Google Scholar 

  36. Oleksenko, A. I., Mukhametov, L. M., Polykova, I. G., Supin, A. Y. & Kovalzon, V. M. Unihemispheric sleep deprivation in bottlenose dolphins. J. Sleep Res. 1, 40–44 (1992).

    CAS  PubMed  Google Scholar 

  37. Siegel, J. M. & Tomaszewski, K. S. Behavioral organization of reticular formation: studies in the unrestrained cat. I. Cells related to axial, limb, eye, and other movements. J. Neurophysiol. 50, 696–716 (1983).

    CAS  PubMed  Google Scholar 

  38. Lyamin, O., Pryaslova, J., Lance, V. & Siegel, J. Animal behaviour: continuous activity in cetaceans after birth. Nature 435, 1177 (2005).

    ADS  CAS  PubMed  Google Scholar 

  39. Carskadon, M. A. & Dement, W. C. in Principles and Practice of Sleep Medicine Vol. 4 (eds Kryger, M. H., Roth, T. & Dement, W. C.) 13–23 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  40. Rattenborg, N. C. et al. Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol. 2, E212 (2004).

    PubMed  PubMed Central  Google Scholar 

  41. Lyamin, O. I., Oleksenko, A. I., Polyakova, I. G. & Mukhametov, L. M. Paradoxical sleep in northern fur seals in water and on land. J. Sleep. Res. 5 (suppl.), 130–130 (1996).

    Google Scholar 

  42. Horne, J. A. REM sleep — by default? Neurosci. Biobehav. Rev. 24, 777–797 (2000).

    CAS  PubMed  Google Scholar 

  43. Siegel, J. M. The REM sleep-memory consolidation hypothesis. Science 294, 1058–1063 (2001).

    ADS  CAS  PubMed  Google Scholar 

  44. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    ADS  CAS  PubMed  Google Scholar 

  45. Krueger, J. M., Obal, F. J. & Fang, J. Why we sleep: a theoretical view of sleep function. Sleep Med. Rev. 3, 119–129 (1999).

    CAS  PubMed  Google Scholar 

  46. Vyazovskiy, V. V., Welker, E., Fritschy, J. M. & Tobler, I. Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur. J. Neurosci. 20, 1363–1370 (2004).

    PubMed  Google Scholar 

  47. Achermann, P. & Borbely, A. A. Mathematical models of sleep regulation. Front. Biosci. 8, s683–s693 (2003).

    PubMed  Google Scholar 

  48. Verret, L., Leger, L., Fort, P. & Luppi, P. H. Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur. J. Neurosci. 21, 2488–2504 (2005).

    PubMed  Google Scholar 

  49. Binks, P. G., Waters, W. F. & Hurry, M. Short-term total sleep deprivation does not selectively impair higher cortical functioning. Sleep 22, 328–334 (1999).

    CAS  PubMed  Google Scholar 

  50. Balkin, T. J. et al. On the importance of countermeasures in sleep and performance models. Aviat. Space Environ. Med. 75, A155–A157 (2004).

    ADS  PubMed  Google Scholar 

  51. Villablanca, J. R. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J. Sleep Res. 13, 179–208 (2004).

    PubMed  Google Scholar 

  52. Everson, C. A. & Crowley, W. R. Reductions in circulating anabolic hormones induced by sustained sleep deprivation in rats. Am. J. Physiol. Endocrinol. Metab. 286, E1060–E1070 (2004).

    CAS  PubMed  Google Scholar 

  53. O'Hara, B. F. et al. Gene expression in the brain across the hibernation cycle. J. Neurosci. 19, 3781–3790 (1999).

    CAS  PubMed  Google Scholar 

  54. Lima, S. L., Rattenborg, N. C., Lesku, J. A. & Amlaner, C. J. Sleep under the risk of predation. Anim. Behav. 70, 723–736 (2005).

    Google Scholar 

  55. Merrick, A. W. & Scharp, D. W. Electroencephalography of resting behavior in cattle, with observations on the question of sleep. Am. J. Vet. Res. 32, 1893–1897 (1971).

    CAS  PubMed  Google Scholar 

  56. Klemm, W. R. Sleep and paradoxical sleep in ruminants. Proc. Soc. Exp. Biol. Med. 121, 635–638 (1966).

    CAS  PubMed  Google Scholar 

  57. Turner, N., Else, P. L. & Hulbert, A. J. An allometric comparison of microsomal membrane lipid composition and sodium pump molecular activity in the brain of mammals and birds. J. Exp. Biol. 208, 371–381 (2005).

    CAS  PubMed  Google Scholar 

  58. Eiland, M. M. et al. Increases in amino-cupric-silver staining of the supraoptic nucleus after sleep deprivation. Brain Res. 945, 1–8 (2002).

    CAS  PubMed  Google Scholar 

  59. Ramanathan, L., Gulyani, S., Nienhuis, R. & Siegel, J. M. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport 13, 1387–1390 (2002).

    CAS  PubMed  Google Scholar 

  60. Everson, C. A., Laatsch, C. D. & Hogg, N. Antioxidant defense responses to sleep loss and sleep recovery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R374–R383 (2005).

    CAS  PubMed  Google Scholar 

  61. Gopalakrishnan, A., Ji, L. L. & Cirelli, C. Sleep deprivation and cellular responses to oxidative stress. Sleep 27, 27–35 (2004).

    PubMed  Google Scholar 

  62. Zimmerman, J. E., Mackiewicz, M., Galante, R. J. et al. Glycogen in the brain of Drosophila melanogaster: diurnal rhythm and the effect of rest deprivation. J. Neurochem. 88, 32–40 (2004).

    CAS  PubMed  Google Scholar 

  63. Allison, T. & Cicchetti, D. V. Sleep in mammals: ecological and constitutional correlates. Science 194, 732–734 (1976).

    ADS  CAS  PubMed  Google Scholar 

  64. Nakanishi, H. et al. Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur. J. Neurosci. 9, 271–279 (1997).

    CAS  PubMed  Google Scholar 

  65. Guzman-Marin, R. et al. Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J. Physiol. 549, 563–571 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Benington, J. H. & Heller, H. C. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347–360 (1995).

    CAS  PubMed  Google Scholar 

  67. Kong, J. et al. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci. 22, 5581–5587 (2002).

    CAS  PubMed  Google Scholar 

  68. Franken, P., Gip, P., Hagiwara, G., Ruby, N. F. & Heller, H. C. Changes in brain glycogen after sleep deprivation vary with genotype. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R413–R419 (2003).

    CAS  PubMed  Google Scholar 

  69. Opp, M. R. & Krueger, J. M. Interleukin-1 is involved in responses to sleep deprivation in the rabbit. Brain. Res. 639, 57–65 (1994).

    CAS  PubMed  Google Scholar 

  70. Xu, Y. L. et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43, 487–497 (2004).

    CAS  PubMed  Google Scholar 

  71. Aserinsky, E. & Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118, 273–274 (1953).

    ADS  CAS  PubMed  Google Scholar 

  72. Schmidt, M. H., Valatx, J. L., Sakai, K., Fort, P. & Jouvet, M. Role of the lateral preoptic area in sleep-related erectile mechanisms and sleep generation in the rat. J. Neurosci. 20, 6640–6647 (2000).

    CAS  PubMed  Google Scholar 

  73. Siegel, J. M. & Vertes, R. P. Sleep and memory: The ongoing debate, Rebuttal. Sleep 28, 1232–1233 (2005).

    Google Scholar 

  74. Vertes, R. P. Memory consolidation in sleep; dream or reality. Neuron 44, 135–148 (2004).

    CAS  PubMed  Google Scholar 

  75. Jouvet-Mounier, D., Astic, L. & Lacote, D. Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev. Psychobiol. 2, 216–239 (1970).

    CAS  PubMed  Google Scholar 

  76. Frank, M. G. & Heller, H. C. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J. Sleep Res. 12, 25–34 (2003).

    PubMed  Google Scholar 

  77. Karlsson, K. A. E., Gall, A. J., Mohns, E. J., Seelke, A. M. H. & Blumberg, M. S. The neural substrates of infant sleep in rats. PLoS Biol. 3, e143 (2005).

    PubMed  PubMed Central  Google Scholar 

  78. Shaffery, J. P., Roffwarg, H. P., Speciale, S. G. & Marks, G. A. Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens. Brain Res. Dev. Brain Res. 114, 109–119 (1999).

    CAS  PubMed  Google Scholar 

  79. Jouvet, M. in Cerebral Correlates of Conscious Experience. INSERM Symposium Vol. 6 (eds Buser, P. & Rougeul-Buser, A.) 245–261 (Elsevier/North-Holland Biomed., Amsterdam, 1978).

    Google Scholar 

  80. Snyder, F. Toward an evolutionary theory of dreaming. Am. J. Psychiatry 123, 121–136 (1966).

    CAS  PubMed  Google Scholar 

  81. Horner, R. L., Sanford, L. D., Pack, A. I. & Morrison, A. R. Activation of a distinct arousal state immediately after spontaneous awakening from sleep. Brain Res. 778, 127–134 (1997).

    CAS  PubMed  Google Scholar 

  82. Baker, F. C., Angara, C., Szymusiak, R. & McGinty, D. Persistence of sleep-temperature coupling after suprachiasmatic nuclei lesions in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2005).

  83. Wehr, T. A. A brain-warming function for REM sleep. Neurosci. Biobehav. Rev. 16, 379–397 (1992).

    CAS  PubMed  Google Scholar 

  84. Darchia, N., Campbell, I. G., Palagini, L. & Feinberg, I. Rapid eye movement density shows trends across REM periods but is uncorrelated with NREM delta in young and elderly human subjects. Brain Res. Bull. 63, 433–438 (2004).

    PubMed  Google Scholar 

  85. Sanford, L. D., Tang, X., Ross, R. J. & Morrison, A. R. Influence of shock training and explicit fear-conditioned cues on sleep architecture in mice: strain comparison. Behav. Genet. 33, 43–58 (2003).

    PubMed  Google Scholar 

  86. Gonzalez, M. M., Debilly, G., Valatx, J. L. & Jouvet, M. Sleep increase after immobilization stress: role of the noradrenergic locus coeruleus system in the rat. Neurosci. Lett. 202, 5–8 (1995).

    CAS  PubMed  Google Scholar 

  87. Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    ADS  CAS  PubMed  Google Scholar 

  88. Siegel, J. M. & Rogawski, M. A. A function for REM sleep: regulation of noradrenergic receptor sensitivity. Brain Res. Rev. 13, 213–233 (1988).

    CAS  Google Scholar 

  89. Pedrazzoli, M. & Benedito, M. A. Rapid eye movement sleep deprivation-induced down-regulation of beta-adrenergic receptors in the rat brainstem and hippocampus. Pharmacol. Biochem. Behav. 79, 31–36 (2004).

    CAS  PubMed  Google Scholar 

  90. Tsai, L. L., Bergmann, B., Perry, B. & Rechtschaffen, A. Effects of chronic total sleep deprivation on central noradrenergic receptors in rat brain. Brain Res. 602, 221–227 (1993).

    CAS  PubMed  Google Scholar 

  91. Hipolide, D. C., Tufik, S., Raymond, R. & Nobrega, J. N. Heterogeneous effects of rapid eye movement sleep deprivation on binding to alpha- and beta-adrenergic receptor subtypes in rat brain. Neuroscience 86, 977–987 (1998).

    CAS  PubMed  Google Scholar 

  92. Hipolide, D. C. et al. Distinct effects of sleep deprivation on binding to norepinephrine and serotonin transporters in rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 297–303 (2005).

    CAS  PubMed  Google Scholar 

  93. Vogel, G. W. An alternative view of the neurobiology of dreaming. Am. J. Psychiatry 135, 1531–1535 (1978).

    CAS  PubMed  Google Scholar 

  94. Rechtschaffen, A. & Bergmann, B. M. Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25, 18–24 (2002).

    PubMed  Google Scholar 

  95. Zenko, C. E., Bergmann, B. M. & Rechtschaffen, A. Vascular resistance in the rat during baseline, chronic total sleep deprivation, and recovery from total sleep deprivation. Sleep 23, 341–346 (2000).

    CAS  PubMed  Google Scholar 

  96. Parmeggiani, P. L., Azzaroni, A. & Calasso, M. Systemic hemodynamic changes raising brain temperature in REM sleep. Brain Res. 940, 55–60 (2002).

    CAS  PubMed  Google Scholar 

  97. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier Academic Press, London, 2005).

    Google Scholar 

  98. Lyamin, O. I. et al. Unihemispheric slow wave sleep and the state of the eyes in a white whale. Behav. Brain Res. 129, 125–129 (2002).

    CAS  PubMed  Google Scholar 

  99. Mukhametov, L. M. & Poliakova, I. G. [Electroencephalographic study of sleep in Sea of Azov porpoises]. Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova 31, 333–339 (1981).

    CAS  PubMed  Google Scholar 

  100. Mukhametov, L. M. Unihemispheric slow-wave sleep in the Amazonian dolphin, Inia geoffrensis. Neurosci. Lett. 79, 128–132 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH and NSF and DARPA. I thank O. Lyamin for the beluga and dolphin photo and the graph of beluga sleep, and A. Siegel, L. Boehmer, R. Nienhuis, A. Rechtschaffen, I. Tobler, C. Heller, S. Ridgway, J. Horne, D. McGinty, C. Amlaner and J. Lesku for very helpful comments.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, J. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005). https://doi.org/10.1038/nature04285

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04285

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing