Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19

Abstract

Cyclophosphamide (CP), a widely used cytostatic, is metabolized by polymorphic drug metabolizing enzymes particularly cytochrome P450 (CYP) enzymes. Its side effects and clinical efficacy exhibit a broad interindividual variability, which might be due to differences in pharmacokinetics. CP-kinetics were determined in 60 patients using a global and a population pharmacokinetic model considering functionally relevant polymorphisms of CYP2B6, CYP2C9, CYP2C19, CYP3A5, and GSTA1. Moreover, metabolic ratios were calculated for selected CP metabolites, analyzed by 31P-NMR-spectroscopy. Analysis of variance revealed that the CYP2C19*2 genotype influenced significantly pharmacokinetics of CP at doses 1000 mg/m2, whereas there was no evidence of an association of other genotypes to CP elimination or clearance. Mean (±SD) CP elimination constants ke (h−1) were 0.109±0.025 in 44 CYP2C19*1/*1 subjects, 0.088±0.018 in 13 CYP2C19*1/*2, and 0.076±0.014 in three inactive CYP2C19*2/*2 carriers (P=0.009). At CP doses higher than 1000 mg/m2, a significantly increase of elimination was observed (P=0.001), possibly due to CYP induction. Further studies should link these findings with the clinical outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hanel M, Kroger N, Sonnenberg S, Bornhauser M, Kruger W, Kroschinsky F et al. Busulfan, cyclophosphamide, and etoposide as high-dose conditioning regimen in patients with malignant lymphoma. Ann Hematol 2002; 81: 96–102.

    Article  CAS  PubMed  Google Scholar 

  2. Tam CS, Wolf MM, Januszewicz EH, Prince HM, Westerman D, Seymour JF . Fludarabine and cyclophosphamide using an attenuated dose schedule is a highly effective regimen for patients with indolent lymphoid malignancies. Cancer 2004; 100: 2181–2189.

    Article  CAS  PubMed  Google Scholar 

  3. Rodenhuis S . High-dose chemotherapy in breast cancer—interpretation of the randomized trials. Anticancer Drugs 2001; 12: 85–88.

    Article  CAS  PubMed  Google Scholar 

  4. Ben Ari ET . Dual purpose: some cancer therapies used to treat autoimmune diseases. J Natl Cancer Inst 2004; 96: 577–579.

    Article  PubMed  Google Scholar 

  5. Pendse S, Ginsburg E, Singh AK . Strategies for preservation of ovarian and testicular function after immunosuppression. Am J Kidney Dis 2004; 43: 772–781.

    Article  PubMed  Google Scholar 

  6. Martoni A, Panetta A, Angelelli B, Melotti B, Pannuti F . A phase II study of carboplatin and cyclophosphamide in advanced ovarian carcinoma. J Chemother 1993; 5: 47–51.

    Article  CAS  PubMed  Google Scholar 

  7. Fraiser LH, Kanekal S, Kehrer JP . Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 1991; 42: 781–795.

    Article  CAS  PubMed  Google Scholar 

  8. Buckner CD, Rudolph RH, Fefer A, Clift RA, Epstein RB, Funk DD et al. High-dose cyclophosphamide therapy for malignant disease: toxicity, tumor response, and the effect of stored autologous marrow. Cancer 1972; 29: 357–365.

    Article  Google Scholar 

  9. Newell DR, Gore ME . Toxicity of alkylating agents: clinical characteristics and pharmacokinetic determinants. In: Powis G, Hacker MP (eds). The Toxicity of Anticancer Drugs. Pergamon: New York, 1991, pp 44–62.

    Google Scholar 

  10. Langford CA . Complications of cyclophosphamide therapy. Eur Arch Otorhinolaryngol 1997; 254: 65–72.

    Article  CAS  PubMed  Google Scholar 

  11. Brock N, Stekar J, Pohl J, Niemeyer U, Scheffler G . Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide, ifosfamide, trofosfamide and sufosfamide. Arzneimittelforschung 1979; 29: 659–661.

    CAS  PubMed  Google Scholar 

  12. Chang TK, Yu L, Goldstein JA, Waxman DJ . Identification of the polymorphically expressed CYP2C19 and the wild type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 1997; 7: 211–221.

    Article  CAS  PubMed  Google Scholar 

  13. Griskevicius L, Yasar U, Sandberg M, Hidestrand M, Eliasson E, Tybring G et al. Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 2003; 59: 103–109.

    Article  CAS  PubMed  Google Scholar 

  14. Ren S, Yang JS, Kalhorn TF, Slattery JT . Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997; 57: 4229–4235.

    CAS  PubMed  Google Scholar 

  15. Chang TK, Weber GF, Crespi CL, Waxman DJ . Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53: 5629–5637.

    CAS  PubMed  Google Scholar 

  16. Roy P, Yu LJ, Crespi CL, Waxman DJ . Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27: 655–666.

    CAS  PubMed  Google Scholar 

  17. Xie HJ, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M et al. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3: 53–61.

    Article  CAS  PubMed  Google Scholar 

  18. Finta C, Zaphiropoulos PG . The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene 2000; 260: 13–23.

    Article  CAS  PubMed  Google Scholar 

  19. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  PubMed  Google Scholar 

  20. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–779.

    Article  CAS  PubMed  Google Scholar 

  21. Dirven HA, van Ommen B, van Bladeren PJ . Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 1994; 54: 6215–6220.

    CAS  PubMed  Google Scholar 

  22. Bohnenstengel F, Hofmann U, Eichelbaum M, Kroemer HK . Characterization of the cytochrome P450 involved in side-chain oxidation of cyclophosphamide in humans. Eur J Clin Pharmacol 1996; 51: 297–301.

    Article  CAS  PubMed  Google Scholar 

  23. Huang Z, Roy P, Waxman DJ . Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59: 961–972.

    Article  CAS  PubMed  Google Scholar 

  24. Sladek NE . Metabolism of oxazaphosphorines. Pharmacol Ther 1988; 37: 301–355.

    Article  CAS  PubMed  Google Scholar 

  25. Dockham PA, Lee MO, Sladek NE . Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde. Biochem Pharmacol 1992; 43: 2453–2469.

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal DP, von Eitzen U, Meier-Tackmann D, Goedde HW . Metabolism of cyclophosphamide by aldehyde dehydrogenases. Adv Exp Med Biol 1995; 372: 115–122.

    Article  CAS  PubMed  Google Scholar 

  27. Lartigue-Mattei C, Chabard JL, Touzet C, Chollet P, Plagne R, Petit J et al. Pharmacokinetics of cyclophosphamide administered alone or in combination with vindesin or cisplatin in 5 patients with bronchial adenocarcinoma. Biomed Pharmacother 1988; 42: 555–559.

    CAS  PubMed  Google Scholar 

  28. Gervot L, Rochat B, Gautier JC, Bohnenstengel F, Kroemer H, de B et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999; 9: 295–306.

    Article  CAS  PubMed  Google Scholar 

  29. Martin H, Sarsat JP, de W, I, Housset C, Balladur P, Beaune P et al. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 2003; 20: 557–568.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Faucette S, Sueyoshi T, Moore R, Ferguson S, Negishi M et al. A novel distal enhancer module regulated by pregnane X receptor/constitutive androstane receptor is essential for the maximal induction of CYP2B6 gene expression. J Biol Chem 2003; 278: 14146–14152.

    Article  CAS  PubMed  Google Scholar 

  31. Takada K, Arefayene M, Desta Z, Yarboro CH, Boumpas DT, Balow JE et al. Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis. Arthritis Rheum 2004; 50: 2202–2210.

    Article  CAS  PubMed  Google Scholar 

  32. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003; 13: 619–626.

    Article  CAS  PubMed  Google Scholar 

  33. Petros W, Broadwater G, Colvin M, Marks J . Association of CYP3A5 genotype with cyclophosphamide pharmacokinetics and overall survival in patients with breast cancer. Proc Am Assoc Cancer Res 2004, p 45 (Abstract).

  34. Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT . Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72: 326–332.

    Article  CAS  PubMed  Google Scholar 

  35. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U et al. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 2001; 11: 399–415.

    Article  CAS  PubMed  Google Scholar 

  36. King BP, Leathart JB, Mutch E, Williams FM, Daly AK . CYP3A5 phenotype-genotype correlations in a British population. Br J Clin Pharmacol 2003; 55: 625–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coles BF, Morel F, Rauch C, Huber WW, Yang M, Teitel CH et al. Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 2001; 11: 663–669.

    Article  CAS  PubMed  Google Scholar 

  38. Busse D, Busch FW, Bohnenstengel F, Eichelbaum M, Fischer P, Opalinska J et al. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15: 1885–1896.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the German Federal Ministry of Education and Research 01 GG 9845/5 to IC and IR We thank Baxter Oncology GmbH for providing us with CP and ifosphamide. The excellent technical assistance of Ingrid Geissler, Maria Purwanto and Zhou Xiao is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Cascorbi.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timm, R., Kaiser, R., Lötsch, J. et al. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J 5, 365–373 (2005). https://doi.org/10.1038/sj.tpj.6500330

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500330

Keywords

This article is cited by

Search

Quick links