Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interaction between the Val158Met catechol-O-methyltransferase gene variant and second-generation antipsychotic treatment on blood pressure in children

Subjects

Abstract

Second-generation antipsychotic (SGA) medications are associated with cardiometabolic risk factors such as obesity and elevated blood pressure (BP) in some individuals. The goal of this study is to determine whether the Val158Met variant (rs4680) in the catechol-O-methyltransferase (COMT) gene, associated with BP in adults, is associated with elevated BP in SGA-treated children. A cross-sectional population of SGA-treated (n=134) and SGA-naive (n=168) children, 18 years of age, were genotyped and assessed for markers of cardiometabolic health. An interaction was found between SGA treatment and COMT genotype for BP. After adjusting for covariates, SGA-treated children with the Met allele had higher systolic and diastolic BP (P=0.014 and P=0.034, respectively), and higher fasting glucose concentrations (P=0.030) compared with children with the Val/Val genotype. This was not observed in SGA-naive children. The Met allele of the COMT Val158Met variant may identify SGA-treated children at risk for elevated BP and fasting blood glucose concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cooper WO, Arbogast PG, Ding H, Hickson GB, Fuchs DC, Ray WA . Trends in prescribing of antipsychotic medications for US children. Ambul Pediatr 2006; 6: 79–83.

    Article  PubMed  Google Scholar 

  2. Olfson M, Blanco C, Liu L, Moreno C, Laje G . National trends in the outpatient treatment of children and adolescents with antipsychotic drugs. Arch Gen Psychiatry 2006; 63: 679–685.

    Article  PubMed  Google Scholar 

  3. Alessi-Severini S, Biscontri RG, Collins DM, Kozyrskyj A, Sareen J, Enns MW . Utilization and costs of antipsychotic agents: a Canadian population-based study, 1996-2006. Psychiatr Serv 2008; 59: 547–553.

    Article  PubMed  Google Scholar 

  4. Correll CU, Frederickson AM, Kane JM, Manu P . Metabolic syndrome and the risk of coronary heart disease in 367 patients treated with second-generation antipsychotic drugs. J Clin Psychiatry 2006; 67: 575–583.

    Article  CAS  PubMed  Google Scholar 

  5. Shirzadi AA, Ghaemi SN . Side effects of atypical antipsychotics: extrapyramidal symptoms and the metabolic syndrome. Harv Rev Psychiatry 2006; 14: 152–164.

    Article  PubMed  Google Scholar 

  6. Morrato EH, Nicol GE, Maahs D, Druss BG, Hartung DM, Valuck RJ et al. Metabolic screening in children receiving antipsychotic drug treatment. Arch Pediatr Adolesc Med 2010; 164: 344–351.

    Article  PubMed  Google Scholar 

  7. Correll CU . Multiple antipsychotic use associated with metabolic and cardiovascular adverse events in children and adolescents. Evid Based Ment Health 2009; 12: 93.

    Article  PubMed  Google Scholar 

  8. Panagiotopoulos C, Ronsley R, Davidson J . Increased prevalence of obesity and glucose intolerance in youth treated with second-generation antipsychotic medications. Can J Psychiatry 2009; 54: 743–749.

    Article  PubMed  Google Scholar 

  9. Correll CU, Carlson HE . Endocrine and metabolic adverse effects of psychotropic medications in children and adolescents. J Am Acad Child Adolesc Psychiatry 2006; 45: 771–791.

    Article  PubMed  Google Scholar 

  10. Panagiotopoulos C, Ronsley R, Kuzeljevic B, Davidson J . Waist circumference is a sensitive screening tool for assessment of metabolic syndrome risk in children treated with second-generation antipsychotics. Can J Psychiatry 2012; 57: 34–44.

    Article  PubMed  Google Scholar 

  11. Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK . Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA 2009; 302: 1765–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosner B, Cook NR, Daniels S, Falkner B . Childhood blood pressure trends and risk factors for high blood pressure: the NHANES experience 1988-2008. Hypertension 2013; 62: 247–254.

    Article  CAS  PubMed  Google Scholar 

  13. Shi Y, de Groh M, Morrison H . Increasing blood pressure and its associated factors in Canadian children and adolescents from the Canadian Health Measures Survey. BMC Public Health 2012; 12: 388.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F . High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 2007; 116: 1488–1496.

    Article  PubMed  Google Scholar 

  15. Feber J, Ahmed M . Hypertension in children: new trends and challenges. Clin Sci (Lond) 2010; 119: 151–161.

    Article  Google Scholar 

  16. Hansen ML, Gunn PW, Kaelber DC . Underdiagnosis of hypertension in children and adolescents. JAMA 2007; 298: 874–879.

    Article  CAS  PubMed  Google Scholar 

  17. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114: 555–576.

    Article  Google Scholar 

  18. Yang Q, Zhang Z, Kuklina EV, Fang J, Ayala C, Hong Y et al. Sodium intake and blood pressure among US children and adolescents. Pediatrics 2012; 130: 611–619.

    Article  PubMed  Google Scholar 

  19. Hanevold C, Waller J, Daniels S, Portman R, Sorof J . The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics 2004; 113: 328–333.

    Article  PubMed  Google Scholar 

  20. Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol 2006; 21: 811–819.

    Article  PubMed  Google Scholar 

  21. Devlin AM, Ngai YF, Ronsley R, Panagiotopoulos C . Cardiometabolic risk and the MTHFR C677T variant in children treated with second-generation antipsychotics. Transl Psychiatry 2012; 2: e71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ellingrod VL, Miller DD, Taylor SF, Moline J, Holman T, Kerr J . Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr Res 2008; 98: 47–54.

    Article  PubMed  Google Scholar 

  23. Axelrod J, Tomchick R . Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 1958; 233: 702–705.

    CAS  PubMed  Google Scholar 

  24. Kuchel O . Genetic determinants of dopaminergic activity: potential role in blood pressure regulation. Hypertens Res 1995; 18: S1–10.

    Article  CAS  PubMed  Google Scholar 

  25. Masuda M, Tsunoda M, Imai K . Low catechol-O-methyltransferase activity in the brain and blood pressure regulation. Biol Pharm Bull 2006; 29: 202–205.

    Article  CAS  PubMed  Google Scholar 

  26. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    Article  CAS  PubMed  Google Scholar 

  27. Annerbrink K, Westberg L, Nilsson S, Rosmond R, Holm G, Eriksson E . Catechol O-methyltransferase val158-met polymorphism is associated with abdominal obesity and blood pressure in men. Metabolism 2008; 57: 708–711.

    Article  CAS  PubMed  Google Scholar 

  28. Htun NC, Miyaki K, Song Y, Ikeda S, Shimbo T, Muramatsu M . Association of the catechol-O-methyl transferase gene Val158Met polymorphism with blood pressure and prevalence of hypertension: interaction with dietary energy intake. Am J Hypertens 2011; 24: 1022–1026.

    Article  CAS  PubMed  Google Scholar 

  29. Stewart SH, Oroszi G, Randall PK, Anton RF . COMT genotype influences the effect of alcohol on blood pressure: results from the COMBINE study. Am J Hypertens 2009; 22: 87–91.

    Article  CAS  PubMed  Google Scholar 

  30. Hagen K, Pettersen E, Stovner LJ, Skorpen F, Holmen J, Zwart JA . High systolic blood pressure is associated with Val/Val genotype in the catechol-o-methyltransferase gene. The Nord-Trondelag Health Study (HUNT). Am J Hypertens 2007; 20: 21–26.

    Article  CAS  PubMed  Google Scholar 

  31. Association AP . Diagnostic and Statistical Manual of Mental Disorders 4th edn American Psychiatric Association: Washington DC, 2000.

    Google Scholar 

  32. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  PubMed  Google Scholar 

  33. McCarthy HD, Jarrett KV, Crawley HF . The development of waist circumference percentiles in British children aged 5.0-16.9 y. Eur J Clin Nutr 2001; 55: 902–907.

    Article  CAS  PubMed  Google Scholar 

  34. Kuczmanski R, Ogden C, Grummer-Strawn L, Flegal K, Guo S, Wei R et al. CDC Growth Charts: United States. National Centre for Health Statistics: Hyattsville, MD, USA, 2000.

    Google Scholar 

  35. Barlow SE . Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 2007; 120 (Suppl 4): S164–S192.

    Article  PubMed  Google Scholar 

  36. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995; 34: 4202–4210.

    Article  CAS  PubMed  Google Scholar 

  37. Lott SA, Burghardt PR, Burghardt KJ, Bly MJ, Grove TB, Ellingrod VL . The influence of metabolic syndrome, physical activity and genotype on catechol-O-methyl transferase promoter-region methylation in schizophrenia. Pharmacogenomics J 2013; 13: 264–271.

    Article  CAS  PubMed  Google Scholar 

  38. Jordan J, Lipp A, Tank J, Schroder C, Stoffels M, Franke G et al. Catechol-o-methyltransferase and blood pressure in humans. Circulation 2002; 106: 460–465.

    Article  CAS  PubMed  Google Scholar 

  39. Yeh TK, Yeh TC, Weng CF, Shih BF, Tsao HJ, Hsiao CH et al. Association of polymorphisms in genes involved in the dopaminergic pathway with blood pressure and uric acid levels in Chinese females. J Neural Transm 2010; 117: 1371–1376.

    Article  CAS  PubMed  Google Scholar 

  40. Dietz LJ, Matthews KA . Depressive symptoms and subclinical markers of cardiovascular disease in adolescents. J Adolesc Health 2011; 48: 579–584.

    Article  PubMed  Google Scholar 

  41. Vlachopoulos C, Kosmopoulou F, Alexopoulos N, Ioakeimidis N, Siasos G, Stefanadis C . Acute mental stress has a prolonged unfavorable effect on arterial stiffness and wave reflections. Psychosom Med 2006; 68: 231–237.

    Article  PubMed  Google Scholar 

  42. Beaulieu JM, Gainetdinov RR . The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63: 182–217.

    Article  CAS  PubMed  Google Scholar 

  43. Reynolds GP, Kirk SL . Metabolic side effects of antipsychotic drug treatment—pharmacological mechanisms. Pharmacol Ther 2010; 125: 169–179.

    Article  CAS  PubMed  Google Scholar 

  44. Correll CU, Lencz T, Malhotra AK . Antipsychotic drugs and obesity. Trends Mol Med 2011; 17: 97–107.

    Article  CAS  PubMed  Google Scholar 

  45. Keys JR, Zhou RH, Harris DM, Druckman CA, Eckhart AD . Vascular smooth muscle overexpression of G protein-coupled receptor kinase 5 elevates blood pressure, which segregates with sex and is dependent on Gi-mediated signaling. Circulation 2005; 112: 1145–1153.

    Article  CAS  PubMed  Google Scholar 

  46. Odlind C, Reenila I, Mannisto PT, Juvonen R, Uhlen S, Gogos JA et al. Reduced natriuretic response to acute sodium loading in COMT gene deleted mice. BMC Physiol 2002; 2: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mueck AO, Seeger H . 2-Methoxyestradiol—biology and mechanism of action. Steroids 2010; 75: 625–631.

    Article  CAS  PubMed  Google Scholar 

  48. Dubey RK, Jackson EK . Cardiovascular protective effects of 17beta-estradiol metabolites. J Appl Physiol 2001; 91: 1868–1883.

    Article  CAS  PubMed  Google Scholar 

  49. Bonacasa B, Sanchez ML, Rodriguez F, Lopez B, Quesada T, Fenoy FJ et al. 2-Methoxyestradiol attenuates hypertension and coronary vascular remodeling in spontaneously hypertensive rats. Maturitas 2008; 61: 310–316.

    Article  CAS  PubMed  Google Scholar 

  50. Hernandez M, Hernandez I, Rodriguez F, Pertegal M, Bonacasa B, Salom MG et al. Endothelial dysfunction in gestational hypertension induced by catechol-O-methyltransferase inhibition. Exp Physiol 2013; 98: 856–866.

    Article  CAS  PubMed  Google Scholar 

  51. Hirano Y, Tsunoda M, Shimosawa T, Matsui H, Fujita T, Funatsu T . Suppression of catechol-O-methyltransferase activity through blunting of alpha2-adrenoceptor can explain hypertension in Dahl salt-sensitive rats. Hypertens Res 2007; 30: 269–278.

    Article  CAS  PubMed  Google Scholar 

  52. Palmatier MA, Kang AM, Kidd KK . Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol Psychiatry 1999; 46: 557–567.

    Article  CAS  PubMed  Google Scholar 

  53. Colton CW, Manderscheid RW . Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states. Prev Chronic Dis 2006; 3: A42.

    PubMed  PubMed Central  Google Scholar 

  54. Hennekens CH, Hennekens AR, Hollar D, Casey DE . Schizophrenia and increased risks of cardiovascular disease. Am Heart J 2005; 150: 1115–1121.

    Article  PubMed  Google Scholar 

  55. Casey DE, Haupt DW, Newcomer JW, Henderson DC, Sernyak MJ, Davidson M et al. Antipsychotic-induced weight gain and metabolic abnormalities: implications for increased mortality in patients with schizophrenia. J Clin Psychiatry 2004; 65: 4–18.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Dr Jana Davidson for her assistance in establishing subject recruitment protocols within the Department of Child & Adolescent Psychiatry at BC Children’s Hospital as well as Dr Duc Nguyen for database and statistical support. This work is supported by funding from the British Columbia Mental Health & Substance Use Services (Drs Devlin and Panagiotopoulos) and a Capacity Building Award from the Child & Family Research Institute (Dr Panagiotopoulos). Dr Cote is supported by a Michael Smith Foundation for Health Research/BC Schizophrenia Society Foundation Postdoctoral Fellowship. Dr Panagiotopoulos is supported by Clinician Scientist awards from the Canadian Diabetes Association and Child & Family Research Institute. Dr Devlin is supported by an Investigator award from the Child & Family Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Devlin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cote, A., Panagiotopoulos, C. & Devlin, A. Interaction between the Val158Met catechol-O-methyltransferase gene variant and second-generation antipsychotic treatment on blood pressure in children. Pharmacogenomics J 15, 95–100 (2015). https://doi.org/10.1038/tpj.2014.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.35

Search

Quick links