Self-assembly articles within Nature Physics

Featured

  • News & Views |

    Spiral waves of cell density can form and propagate through bacterial biofilms. These waves are formed by a self-organization process that coordinates pulling forces between neighbouring cells.

    • Guram Gogia
    •  & David R. Johnson
  • Article |

    The occurrence of propagating spiral waves in multicellular organisms is associated with key biological functions. Now this type of wave has also been observed in dense bacterial populations, probably resulting from non-reciprocal cell–cell interactions.

    • Shiqi Liu
    • , Ye Li
    •  & Yilin Wu
  • Article |

    In quasi-crystals, constituents do not form spatially periodic patterns, but their structures still give rise to sharp diffraction patterns. Now, quasi-crystalline patterns are found in a system of spherical macroscopic grains vibrating on a substrate.

    • A. Plati
    • , R. Maire
    •  & G. Foffi
  • Article |

    Dynamic arrest in amorphous gels has so far been ascribed to glass transition. Now, experiments reveal a hierarchical structural ordering in dilute colloidal gels driven by the local potential energy, making this type of gel distinct from amorphous glasses.

    • Hideyo Tsurusawa
    •  & Hajime Tanaka
  • Article |

    The protein VASP can undergo liquid–liquid phase separation. The interplay between the surface tension of the VASP droplet and actin polymerization controls the bundling of actin filaments, a necessary step for many cellular processes.

    • Kristin Graham
    • , Aravind Chandrasekaran
    •  & Jeanne C. Stachowiak
  • Article
    | Open Access

    Topological defect structures that swim have been realized in liquid crystals. Now, a range of structures with topology reminiscent of a Möbius strip swim and transform into one another.

    • Hanqing Zhao
    • , Jung-Shen B. Tai
    •  & Ivan I. Smalyukh
  • Letter |

    The isotropy of a spherical droplet’s surface causes uniform distribution of adsorbed molecules. However, wrapping the droplet by a crystalline monolayer induces structural defects, enabling temperature-controllable positioning of adsorbates.

    • Subhomoy Das
    • , Alexander V. Butenko
    •  & Eli Sloutskin
  • Article |

    Cilia are composed of cytoskeletal filaments and molecular motors and are characterized by a wave-like motion. Here the authors show that this motion is reconstituted in vitro from the self-assembly of polymerizing actin filaments and myosin motors.

    • Marie Pochitaloff
    • , Martin Miranda
    •  & Pascal Martin
  • News & Views |

    Colloidal random lasers are hard to design and control. Combining optically controlled micro-heaters with thermophilic particles attracted by them leads to microlasers with programmable and reversible patterns.

    • Neda Ghofraniha
  • Letter |

    Active matter exhibits a plethora of collective phenomena in both biological and artificial systems. In a model system of colloidal rollers, polar states in active liquids can be controlled.

    • Bo Zhang
    • , Hang Yuan
    •  & Alexey Snezhko
  • News & Views |

    The flagella of microorganisms have provided inspiration for many synthetic devices, but they’re typically not easy to produce. A new class of swimmer makes it look simple by spontaneously growing a tail that it can whip to self-propel.

    • Sophie Ramananarivo
  • Article |

    The authors investigate the role of spherical confinement and curvature-induced topological defects on the crystallization of charged colloids. They conclude that crystallization in spherical confinement is due to a combination of thermodynamics and kinetic pathways.

    • Yanshuang Chen
    • , Zhenwei Yao
    •  & Peng Tan
  • Article |

    The authors investigate out-of-equilibrium crystallization of a binary mixture of sphere-like nanoparticles in small droplets. They observe the spontaneous formation of an icosahedral structure with stable MgCu2 phases, which are promising for photonic applications.

    • Da Wang
    • , Tonnishtha Dasgupta
    •  & Alfons van Blaaderen
  • News & Views |

    Equilibrium self-assembly processes find free-energy minima but no such general statement holds for systems driven out of equilibrium. A new study has employed laser-induced convective flows to achieve dissipative self-assembly across multiple scales with universal growth and fluctuation statistics.

    • Gili Bisker
  • Article |

    Biological systems are able to self-assemble in non-equilibrium conditions thanks to a continuous injection of energy. Here the authors present a tool to achieve non-equilibrium self-assembly of synthetic and biological constituents with sizes spanning three orders of magnitude.

    • Ghaith Makey
    • , Sezin Galioglu
    •  & Serim Ilday
  • Letter |

    Suspended clusters of honeybees withstand dynamic mechanical forcing from their environment. Experiments and simulations suggest that collective stability relies on individual bees responding to local variations in strain.

    • O. Peleg
    • , J. M. Peters
    •  & L. Mahadevan
  • News & Views |

    Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block — a colloid that self-propels.

    • Peer Fischer
  • Letter |

    Active colloidal particles are shown to be capable of aggregating into stable spinning clusters that constitute self-powered microgears. The demonstration reveals a new design principle for micromachinery using dissipative building blocks.

    • Antoine Aubret
    • , Mena Youssef
    •  & Jérémie Palacci
  • News & Views |

    The ideas of topology are breaking ground in origami-based metamaterials. Experiments now show that certain shapes — doughnuts included — exhibit topological bistability, and can be made to click between different topologically stable states.

    • Scott R. Waitukaitis
  • Letter |

    Origami-inspired metamaterial design gives rise to structures with kinematic properties dictated by the topology of their configuration space. The approach allows for well-defined metamaterial properties even in the presence of unpredictable forces.

    • Bin Liu
    • , Jesse L. Silverberg
    •  & Itai Cohen
  • Article |

    Wrinkling in human brain organoids suggests that brain development may be mechanically driven, a notion supported only by model gels so far. Evidence in this simple living system highlights roles for cytoskeletal contraction and nuclear expansion.

    • Eyal Karzbrun
    • , Aditya Kshirsagar
    •  & Orly Reiner
  • Letter |

    Deformable polygons are shown to form fibres when the energies associated with attraction and deformation are comparable. The fibres constitute a kinetically trapped metastable state, reminiscent of irreversible protein assembly in living systems.

    • Martin Lenz
    •  & Thomas A. Witten
  • Letter |

    A 3D-printed fetal brain undergoes constrained expansion to reproduce the shape of the human cerebral cortex. The soft gels of the model swell in solvent, mimicking cortical growth and revealing the mechanical origin of the brain’s folded geometry.

    • Tuomas Tallinen
    • , Jun Young Chung
    •  & L. Mahadevan
  • News & Views |

    Disks interacting via particular potentials self-organize into triangles that stabilize mosaics with 10-, 12-, 18- and 24-fold symmetry, as revealed by computer simulations. Discoveries of further novel quasicrystals may now be within reach.

    • Michael Engel
    •  & Sharon C. Glotzer