Quantum chemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    The high observed abundance of atmospheric methanol over remote oceans is still not well-explained. Here the authors use quantum calculations and atmospheric modelling to show the reaction of methyl peroxy and hydroxyl radicals is a major methanol source (115 Tg/yr), comparable to global terrestrial emissions.

    • Jean-François Müller
    • , Zhen Liu
    •  & Jozef Peeters
  • Article
    | Open Access

    Sulfur-substituted nucleobases are promising photo- and chemotherapeutic drugs. Here, the authors unravel the electronic and structural aspects that lead to the ultrafast population of triplet states in these molecules, providing an explanation for their efficiency as photosensitizers.

    • Sebastian Mai
    • , Marvin Pollum
    •  & Leticia González
  • Article
    | Open Access

    It is essential to understand the effect of molecular vibration on charge transport for better design of molecular electronics. Here, the authors test two benchmark aromatic motifs and show how the coupling between π electrons and molecular vibration is affected by molecular edge topology.

    • Héctor Álvaro Galué
    • , Jos Oomens
    •  & Britta Redlich
  • Article
    | Open Access

    The statistical nature of standard thermodynamics provides an incomplete picture for individual processes at the nanoscale, and new relations have been developed to extend it. Here, the authors show that by quantifying time-asymmetry it is also possible to characterize how quantum coherence is modified in such processes.

    • Matteo Lostaglio
    • , David Jennings
    •  & Terry Rudolph
  • Article
    | Open Access

    Quantum computers promise to efficiently solve problems that would be practically impossible with a normal computer. Peruzzo et al. develop a variational computation approach that uses any available quantum resources and, with a photonic quantum processing unit, find the ground-state molecular energy of He–H+.

    • Alberto Peruzzo
    • , Jarrod McClean
    •  & Jeremy L. O’Brien
  • Article
    | Open Access

    Electron–hole exchange interaction is an intrinsic property of semiconductors, which affects their fine structure. Brovelliet al. demonstrate a nanoengineering-based approach that provides control over the exchange interaction energy at nearly constant emission energy, which cannot be carried out using core-only nanocrystals.

    • S. Brovelli
    • , R.D. Schaller
    •  & V.I. Klimov
  • Article |

    The spatial scale over which metal–insulator transitions happen is not known, despite the importance of this phenomenon in basic and applied research. The authors show that in chromium-doped V2O3, with decreasing temperature, microscopic metallic domains coexist with an insulating background.

    • S. Lupi
    • , L. Baldassarre
    •  & M. Marsi