Physical sciences articles within Nature

Featured

  • Letter |

    In the search to reduce our dependency on fossil-fuel energy, new plastic materials that are less dependent on petroleum are being developed, with water-based gels — hydrogels — representing one possible solution. Here, a mixture of water, 3% clay and a tiny amount of a special organic binder is shown to form a transparent hydrogel that can be moulded into shape-persistent, free-standing objects and that rapidly and completely self-heals when damaged.

    • Qigang Wang
    • , Justin L. Mynar
    •  & Takuzo Aida
  • Letter |

    Although deformation twinning in crystals controls the mechanical behaviour of many materials, its size-dependence has not been explored. Using micro-compression and in situ nano-compression experiments, the stress required for deformation twinning is now found to increase drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre; below this point, deformation twinning is replaced by dislocation plasticity.

    • Qian Yu
    • , Zhi-Wei Shan
    •  & Evan Ma
  • Letter |

    Telescopic measurements of asteroids' colours rarely match laboratory reflectance spectra of meteorites owing to a 'space weathering' process that rapidly reddens asteroid surfaces. 'Unweathered' asteroids, however, with spectra matching ordinary chondrite meteorites, are seen only among small bodies with orbits that cross inside the orbits of Mars and Earth. Such unweathered asteroids are now shown to have experienced orbital intersections closer than the Earth–Moon distance within the past half-million years.

    • Richard P. Binzel
    • , Alessandro Morbidelli
    •  & Alan T. Tokunaga
  • News & Views |

    The use of magnetic fields to assemble particles into membranes provides a powerful tool for exploring the physics of self-assembly and a practical method for synthesizing functional materials.

    • Jack F. Douglas
  • News & Views |

    Springtime ozone levels in the lower atmosphere over western North America are rising. The source of this pollution may be Asia, a finding that reaffirms the need for international air-quality control.

    • Kathy Law
  • News & Views |

    Asteroids are weakly bound piles of rubble, and if one comes close to Earth, tides can cause the object to undergo landslides and structural rearrangement. The outcome of this encounter is a body with meteorite-like colours.

    • Clark R. Chapman
  • News Feature |

    Like any other field, research on climate change has some fundamental gaps, although not the ones typically claimed by sceptics. Quirin Schiermeier takes a hard look at some of the biggest problem areas.

    • Quirin Schiermeier
  • Letter |

    The close binary Algol system contains a radio-bright KIV sub-giant star in a very close and rapid orbit with a main sequence B8 star. Evidence points to the existence of an extended, complex coronal magnetosphere originating at the cooler K subgiant, but the detailed morphology of the subgiant's corona and its possible interaction with its companion are unknown. Multi-epoch radio imaging of the Algol system now reveals a large coronal loop suggestive of a persistent asymmetric magnetic field structure aligned between the two stars.

    • W. M. Peterson
    • , R. L. Mutel
    •  & W. M. Goss
  • Letter |

    The properties of 'dwarf' galaxies have long challenged the cold dark matter (CDM) model of galaxy formation, as the properties of most observed dwarf galaxies contrast with models based on the dominance of CDM. Here, hydrodynamical simulations (assuming the presence of CDM) are reported in which the analogues of dwarf galaxies — bulgeless and with shallow central dark-matter profiles — arise naturally.

    • F. Governato
    • , C. Brook
    •  & P. Madau
  • Letter |

    Phytochromes regulate numerous photoresponses in plants and microorganisms through their ability to photointerconvert between a red-light-absorbing, ground state (Pf) and a far-red-light-absorbing, photoactivated state (Pfr). The structures of several phytochromes as Pf have been determined previously; here, the three-dimensional solution structure of the bilin-binding domain as Pfr is described. The results shed light on the structural basis for photoconversion to the activated Pfr form.

    • Andrew T. Ulijasz
    • , Gabriel Cornilescu
    •  & Richard D. Vierstra
  • Editorial |

    Manufacturers of computer systems should welcome researchers' efforts to find flaws.

  • News & Views |

    Windy weather is forecast where stars are forming. Numerical simulations show that these winds can reshape dwarf galaxies, reconciling their properties with the prevailing theory of galaxy formation.

    • Marla Geha
  • News |

    Collaboration launches effort to track marine nutrients.

    • Mark Schrope
  • Letter |

    The amplitude of the magnetic field near the Galactic Centre has been uncertain by two orders of magnitude for several decades. A compilation of previous data now reveals a downward break in the region's non-thermal radio spectrum; this requires that the Galactic Centre field be at least ∼50 microgauss on 400 parsec scales, with evidence supporting a field of 100 microgauss. This would imply that over 10% of the Galaxy's magnetic energy is contained in only around 0.05% (or less) of its volume.

    • Roland M. Crocker
    • , David I. Jones
    •  & Raymond J. Protheroe
  • Letter |

    From earthquakes to hard drives, frictional motion and its strength are involved in a wide range of phenomena. The strength of an interface that divides two sliding bodies is determined by both the real contact area and the contacts' shear strength. By continuous measurements of the concurrent local evolution of the real contact area and the corresponding interface motion from the first microseconds when contact detachment occurs, frictional strength is now characterized from short to long timescales.

    • Oded Ben-David
    • , Shmuel M. Rubinstein
    •  & Jay Fineberg
  • Letter |

    The Dirac equation successfully merges quantum mechanics with special relativity. It predicts some peculiar effects such as 'Zitterbewegung', an unexpected quivering motion of a free relativistic quantum particle. This and other predicted phenomena are key fundamental examples for understanding relativistic quantum effects, but are difficult to observe in real particles. Here, using a single trapped ion set to behave as a free relativistic quantum particle, a quantum simulation of the one-dimensional Dirac equation is demonstrated.

    • R. Gerritsma
    • , G. Kirchmair
    •  & C. F. Roos
  • Letter |

    Existing models of type Ia supernovae generally explain their observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but simulations so far have failed to produce an explosion. Here, a simulation of the merger of two equal-mass white dwarfs is presented that leads to a sub-luminous explosion; it requires a single common-envelope phase and component masses of about 0.9 solar masses.

    • Rüdiger Pakmor
    • , Markus Kromer
    •  & Wolfgang Hillebrandt
  • Letter |

    The Southern Ocean is potentially a substantial sink of anthropogenic carbon dioxide; however, the regulation of this carbon sink by the wind-driven Ekman flow, mesoscale eddies and their interaction is under debate. Here, a high-resolution ocean circulation and carbon cycle model is used to study intra-annual variability in anthropogenic carbon dioxide over a two-year time period; the Ekman flow is found to be the primary mechanism of anthropogenic carbon dioxide transport across the Antarctic polar front.

    • T. Ito
    • , M. Woloszyn
    •  & M. Mazloff
  • News Feature |

    Renewable energy is not a viable option unless energy can be stored on a large scale. David Lindley looks at five ways to do that.

    • David Lindley
  • News & Views |

    The peculiar ultra-fast trembling motion of a free electron — the Zitterbewegung predicted by Erwin Schrödinger in 1930 when he scrutinized the Dirac equation — has been simulated using a single trapped ion.

    • Christof Wunderlich
  • Books & Arts |

    The latest thesis on the disappearance of physicist Ettore Majorana adds little, but reminds us of the Nobel-prizewinning quality of the discoveries he made during his brief career, explains Frank Close.

    • Frank Close
  • News & Views |

    The progenitors of type Ia supernovae, the standard candles that lit the way to dark energy, have been elusive. A largely dismissed scenario has now produced one, but the results aren't what anyone expected.

    • D. Andrew Howell
  • Column |

    Science should focus more on understanding the present and less on predicting the future, argues Daniel Sarewitz.

    • Daniel Sarewitz
  • News |

    Nature looks at what key events may come from the research world in 2010.

    • Richard Van Noorden
  • Opinion |

    For the first issue of the new decade, Nature asked a selection of leading researchers and policy-makers where their fields will be ten years from now. We invited them to identify the key questions their disciplines face, the major roadblocks and the pressing next steps.

  • News |

    Srikumar Banerjee, head of India's Atomic Energy Commission, outlines plans for the country's energy supply.

    • K. S. Jayaraman