Electronics, photonics and device physics articles within Nature Communications

Featured

  • Article
    | Open Access

    Luo et al. report a self-driven hemispherical retinomorphic eye that employs ionogel heterojunctions as photoreceptors. This photoreceptor exhibits broadband photosynapse, high conformability, retinal transplantation, and visual restoration for re-time optical imaging and motion tracking.

    • Xu Luo
    • , Chen Chen
    •  & Wei Huang
  • Article
    | Open Access

    Interesting non-Hermitian quantum dynamics can be accessed in analogue quantum simulators consisting of Hermitian bosonic systems with squeezing and antisqueezing terms. Here, the authors use a coplanar waveguide resonator connected to a SQUID to simulate the bosonic version of the Kitaev chain.

    • Jamal H. Busnaina
    • , Zheng Shi
    •  & Christopher M. Wilson
  • Article
    | Open Access

    Band engineering in optics allows the design of unconventional forms of light with potential optoelectronic applications. Here, the authors realize slow-light intercavity polaritons in an array of coupled cavities, the photonic architecture enables the spatial segregation of photons and excitons

    • Yesenia A. García Jomaso
    • , Brenda Vargas
    •  & Giuseppe Pirruccio
  • Article
    | Open Access

    In contrast to the commonly studied optical frequency combs, here, the authors demonstrate a radio frequency system able to wirelessly and passively generate frequency combs as a battery-free solution for far-field ranging of unmanned vehicles in GPS-denied settings.

    • Hussein M. E. Hussein
    • , Seunghwi Kim
    •  & Cristian Cassella
  • Article
    | Open Access

    Wave scattering can be described with a diffusion model in which the velocity is randomized by scattering. Here the authors find that the velocities of different transmission eigenchannels are distinct on all length scales.

    • Azriel Z. Genack
    • , Yiming Huang
    •  & Zhou Shi
  • Article
    | Open Access

    Electron–phonon interactions are a crucial aspect of high-quality graphene devices. Here, the authors show that graphene resistivity grows strongly in the direction of the carrier flow when the drift velocity exceeds the speed of sound due to the electrical amplification of acoustic terahertz phonons.

    • Aaron H. Barajas-Aguilar
    • , Jasen Zion
    •  & Javier D. Sanchez-Yamagishi
  • Article
    | Open Access

    T centers in silicon are promising candidates for quantum applications yet suffer from weak optical transitions. Here, by integrating with a silicon nanocavity, the authors demonstrate an enhancement of the photon emission rate for a single T center.

    • Adam Johnston
    • , Ulises Felix-Rendon
    •  & Songtao Chen
  • Article
    | Open Access

    Miniaturized and efficient optical modulators are desired for data transmission, processing and communication. Here, the authors report the fabrication of exciton-polariton Mach–Zehnder modulators based on thin WS2 waveguides with a footprint of ~30 μm², modulation ratio up to −6.20 dB and nanosecond response times.

    • Seong Won Lee
    • , Jong Seok Lee
    •  & Su-Hyun Gong
  • Article
    | Open Access

    Dielectric constant of non-fullerene acceptors plays a critical role in organic solar cells in terms of exciton dissociation and charge recombination. Here, authors report selenium substitution on central core of acceptors to improve dielectric constant, realizing devices with efficiency of 19.0%.

    • Xinjun He
    • , Feng Qi
    •  & Wallace C. H. Choy
  • Article
    | Open Access

    In-sensor computing requires detectors with polarity reconfigurability and linear responsivity. Pang et al. report a CsPbBr3 perovskite single crystal X-ray detector for edge extraction imaging with a data compression ratio of 46.4% and classification task with an accuracy of 100%.

    • Jincong Pang
    • , Haodi Wu
    •  & Guangda Niu
  • Article
    | Open Access

    Modern electronic devices are too fast and too small to be measured by conventional electronic means. Here the authors combine electron microscopy with femtosecond laser technology and measure the functionality of terahertz electronics in space and time.

    • Maximilian Mattes
    • , Mikhail Volkov
    •  & Peter Baum
  • Article
    | Open Access

    Biomedical X-ray imaging requires high spatial and temporal resolution of the detectors. Liu et al. report a screen-printed perovskite direct-conversion X-ray CMOS imager with a spatial resolution of 5 lp mm−1 and a speed of 300 fps for low-dose 2D radiography and 3D computed tomography imaging.

    • Yanliang Liu
    • , Chaosong Gao
    •  & Yongshuai Ge
  • Article
    | Open Access

    Fe3GaTe2 is a van der Waals material with a Curie temperature well above room temperature, making it an attractive material for integration into spintronic devices. Here, Kajale et al demonstrate spin-orbit torque induced switching of the magnetization of Fe3GaTe2, above room temperature, using a Pt spin Hall layer.

    • Shivam N. Kajale
    • , Thanh Nguyen
    •  & Deblina Sarkar
  • Article
    | Open Access

    When multiple oscillators are tuned, degeneracies occur on a knot-shaped region in the space of tuning parameters. This knot influences how such systems can be tuned. Here, the authors reconcile two common means for visualizing this influence.

    • Chitres Guria
    • , Qi Zhong
    •  & Jack Gwynne Emmet Harris
  • Article
    | Open Access

    The combination of strong light-matter interactions and controllable magnetic properties make magnetic semiconductors attractive for both fundamental physics and the development of devices. Here, Hendriks et al show how the optically driven magnetization dynamics in Cr2Ge2Te6 can be controlled via electrostatic gating.

    • Freddie Hendriks
    • , Rafael R. Rojas-Lopez
    •  & Marcos H. D. Guimarães
  • Article
    | Open Access

    The efficiency of perovskite solar cells is affected by open-circuit voltage losses due to radiative and non-radiative charge recombination. Here, authors report photocurrent and electroluminescence spectroscopy to probe radiative recombination at sub-bandgap defects in wide-bandgap solar cells.

    • Guus J. W. Aalbers
    • , Tom P. A. van der Pol
    •  & René A. J. Janssen
  • Article
    | Open Access

    Skyrmions, a type of topological spin texture, have garnered interest for use in spintronic devices. Typically, these devices necessitate moving the skyrmions via applied currents. Here, Yang et al demonstrate the driving of skyrmions by surface acoustic waves.

    • Yang Yang
    • , Le Zhao
    •  & Tianxiang Nan
  • Article
    | Open Access

    Here the authors unveil an approach rooted in non-Hermitian physics to precisely control light amplification in an integrated photonic platform, paving the way for innovative on-chip functionalities, like coherent control of light amplification and routing.

    • Weijie Liu
    • , Quancheng Liu
    •  & Feng Chen
  • Article
    | Open Access

    Existing neuromorphic hardware, focusing mainly on shallow-reservoir computing, is challenged in providing adequate spatial and temporal scales characteristic for effective computing. Here, Gao et al. report an ultra-short channel organic neuromorphic vertical transistor with distributed reservoir states.

    • Changsong Gao
    • , Di Liu
    •  & Huipeng Chen
  • Article
    | Open Access

    Light-matter interfaces implementing arbitrary conditional operations on incoming photons would have several applications in quantum computation and communications. Here, the authors demonstrate conditional polarization rotation induced by a single quantum dot spin embedded in an electrically contacted micropillar, spanning up to a pi flip.

    • E. Mehdi
    • , M. Gundín
    •  & L. Lanco
  • Article
    | Open Access

    Gate-defined superconducting moiré devices offer high tunability for probing the nature of superconducting and correlated insulating states. Here, the authors report the Little–Parks and Aharonov–Bohm effects in a single gate-defined magic-angle twisted bilayer graphene device.

    • Shuichi Iwakiri
    • , Alexandra Mestre-Torà
    •  & Klaus Ensslin
  • Article
    | Open Access

    Photonic waveguide lattices implementing continuous quantum walks have a wide range of applications yet remain based on static devices. Here, the authors demonstrated a fully programmable waveguide array by implementing various Hamiltonians.

    • Yang Yang
    • , Robert J. Chapman
    •  & Alberto Peruzzo
  • Article
    | Open Access

    The authors demonstrate real-time blind photonic interference cancellation using FPGA-photonic coordinated processing with zero calibration micro-ring resonator control and sub-second cancellation weight identification.

    • Joshua C. Lederman
    • , Weipeng Zhang
    •  & Paul R. Prucnal
  • Article
    | Open Access

    The predicted dissipative quantum phase transition in a Josephson junction coupled to resistive environment has been examined in recent experiments. In a heat transport experiment, Subero et al. show that the junction acts as an inductor at high frequencies, while DC charge transport confirms insulating behaviour.

    • Diego Subero
    • , Olivier Maillet
    •  & Jukka P. Pekola
  • Article
    | Open Access

    The authors introduce an agile, all-fiber laser source with three frequency combs. Three EOM combs from a single laser are expanded in a tri-core nonlinear fiber, maintaining high mutual coherence. This system’s performance is showcased through a 2D four-wave mixing spectroscopy experiment.

    • Eve-Line Bancel
    • , Etienne Genier
    •  & Arnaud Mussot
  • Article
    | Open Access

    SrTiO3-based heterostructures display intriguing low-temperature transport features. Here the authors study LaAlO3/SrTiO3 nanoscale crossbar devices, revealing correlations between electron pairing without superconductivity, anomalous Hall effect, and electronic nematicity, suggesting a shared microscopic origin.

    • Aditi Nethwewala
    • , Hyungwoo Lee
    •  & Jeremy Levy
  • Article
    | Open Access

    Nonlinear damping is a ubiquitous phenomenon in technological applications involving oscillators, but its origin is sometimes poorly understood. Here, the authors highlight how the interplay between quantum noise and Kerr anharmonicity introduces an effect resembling nonlinear damping.

    • Mario F. Gely
    • , Adrián Sanz Mora
    •  & Gary A. Steele
  • Article
    | Open Access

    Pump-probe techniques—where a system is driven into a nonequilibrium state and then studied as a function of time—provide rich information about the behaviour of charge carriers and their interactions. Here, Yoo et al extend this class of techniques by injecting electrons at a selected energy and observing their decay in energy and momentum space.

    • H. M. Yoo
    • , M. Korkusinski
    •  & R. C. Ashoori
  • Article
    | Open Access

    The authors study transport in Nb-(Pt/Cu)-Nb Josephson junctions (JJ), where Pt/Cu is a Rashba interface. Due to the Rashba–Edelstein effect, a charge current leads to a non-equilibrium spin moment at the Pt/Cu interface, which can be measured from a shift of the Fraunhofer pattern of the JJ.

    • Tapas Senapati
    • , Ashwin Kumar Karnad
    •  & Kartik Senapati
  • Article
    | Open Access

    Previous work on charge Kondo circuits, in which a spin is formed by two degenerate charge states of a metallic island, has been limited to transport measurements of multi-channel Kondo problems. Piquard et al. use thermodynamic measurements via a charge sensor to study the evolution of a single Kondo impurity.

    • C. Piquard
    • , P. Glidic
    •  & F. Pierre
  • Article
    | Open Access

    The authors demonstrate a very stable yet broadly tunable photonic THz source, characterized from 2 GHz to 1.4 THz. A very narrow Lamb dip feature is observed in a water absorption line, showcasing its potential for sub-kHz resolution spectroscopy.

    • Léo Djevahirdjian
    • , Loïc Lechevallier
    •  & Samir Kassi
  • Article
    | Open Access

    Topological spin textures, such as skyrmions and antiskyrmions are of interest for use in information storage, owing to their inherent robustness. Critical to this use is the ability to manipulate these spin textures. Here, Yasin et al. demonstrate heat current driven transformation of a topological spin texture in a ferromagnet at room temperature.

    • Fehmi Sami Yasin
    • , Jan Masell
    •  & Xiuzhen Yu
  • Article
    | Open Access

    The authors study Andreev bound states (ABSs) in 3-terminal InAs/Al Josephson-junction devices. They find signatures of hybridization between two ABSs, with band structure tunable by electric currents that generate magnetic fluxes threading superconducting loops in the device.

    • Marco Coraiola
    • , Daniel Z. Haxell
    •  & Fabrizio Nichele
  • Article
    | Open Access

    Here, the authors theoretically predict the formation of synergistic correlated and topological states in Coulomb-coupled and gate-tunable graphene/insulator heterostructures, proposing a number of promising substrate candidates and a possible explanation for recent experimental observations in graphene/CrOCl heterostructures.

    • Xin Lu
    • , Shihao Zhang
    •  & Jianpeng Liu