Electronic and spintronic devices articles within Nature Communications

Featured

  • Article
    | Open Access

    Designing efficient reconfigurable field effect transistors remains a challenge. Here, the authors develop a transistor with three distinct operation modes, realized directly on an industrial 22nm FDSOI platform, demonstrating a reconfigurable analog circuit element with signal follower, phase shifter, and frequency doubler operation.

    • Maik Simon
    • , Halid Mulaosmanovic
    •  & Jens Trommer
  • Article
    | Open Access

    The conventional von Neumann computing architecture is ill suited to data intensive tasks as data must be repeated moved between the separated processing and memory units. Here, Seo et al propose a CMOS compatible, highly linear gate injection field-effect transistor where data can be both stored and processed.

    • Seokho Seo
    • , Beomjin Kim
    •  & Shinhyun Choi
  • Article
    | Open Access

    Determining the triboelectric charge and energy density of dielectric materials is generally limited by many factors, failing to reflect their intrinsic behaviour. Here, a standardized strategy is proposed employing contact-separation TENG and supressing air-breakdown to assess max triboelectric charge and energy densities leading to an updated triboelectric series.

    • Di Liu
    • , Linglin Zhou
    •  & Zhong Lin Wang
  • Article
    | Open Access

    The use of light in driving the magnetization of materials has great technological potential, as well as allowing for insights into the fast dynamics of magnetic systems. Here, the authors combine CrI3, a van der Waals magnet, with WSe2, and demonstrate all optical switching of the resulting heterostructure.

    • Maciej Da̧browski
    • , Shi Guo
    •  & Robert J. Hicken
  • Article
    | Open Access

    Excitations of the fractional quantum Hall states are of great interest because they obey anyonic statistics, but electronic interferometers give contrasting results about their quantum coherence. Here the authors use novel two-particle time-domain interferometry to show that quantum coherence is indeed preserved.

    • I. Taktak
    • , M. Kapfer
    •  & D. C. Glattli
  • Article
    | Open Access

    2D transition metal ditellurides exhibit nontrivial topological phases, but the controlled bottom-up synthesis of these materials is still challenging. Here, the authors report the layer-by-layer growth of large-area bilayer and trilayer 1T’ MoTe2 films, showing thickness-dependent ferroelectricity and nonlinear Hall effect.

    • Teng Ma
    • , Hao Chen
    •  & Kian Ping Loh
  • Article
    | Open Access

    Spin qubits are a platform for quantum computing. There are many advantages for quantum information processing if the spin qubit can move. Here, Helgers et al. use a surface acoustic wave to define a moving quantum dot and demonstrate the magneticfield-free control of the spin precession, bringing “flying” spin qubits a step closer.

    • Paul L. J. Helgers
    • , James A. H. Stotz
    •  & Paulo V. Santos
  • Article
    | Open Access

    Spaces with negative curvature are difficult to realise and investigate experimentally, but they can be emulated with synthetic matter. Here, the authors show how to do this using an electric circuit network, and present a method to characterize and verify the hyperbolic nature of the implemented model.

    • Patrick M. Lenggenhager
    • , Alexander Stegmaier
    •  & Tomáš Bzdušek
  • Article
    | Open Access

    Spintronic terahertz (THz) emitters are a class of magnetic heterostructure where femtosecond laser excitations generate THz radiation emission. While they have great potential, electric field control of spintronic emitter remains a challenge. Here, by combining a spintronic emitter with a piezoelectric substrate, Agarwal et al. demonstrate electric field control of THz emission through induced piezostrain.

    • Piyush Agarwal
    • , Lisen Huang
    •  & Ranjan Singh
  • Article
    | Open Access

    Long operational stability is essential to commercialisation of organic solar cells. Here, the authors investigate the thermal degradation of inverted photovoltaic devices based on PM6:Y6 non-fullerene system to reveal that trap-induced transport resistance is primarily responsible for the drop in fill factor.

    • Christopher Wöpke
    • , Clemens Göhler
    •  & Carsten Deibel
  • Article
    | Open Access

    Understanding the charge trapping mechanism in organic semiconductors is crucial to design molecules for high-performance organic photodetectors. Labanti et al. systematically investigate the impact of donor molecular structure on the energetic disorder that affects both shallow and deep trap formation.

    • Chiara Labanti
    • , Jiaying Wu
    •  & Ji-Seon Kim
  • Article
    | Open Access

    Harmonic measurements have been used extensively in ferromagnetic/heavy metal heterostructures to characterize the magnetization dynamic; however, it has remained unclear about whether such techniques could be applied to antiferromagnetic devices. Here, Cheng et al demonstrate such a harmonic measurement approach in an antiferromagnet.

    • Yang Cheng
    • , Egecan Cogulu
    •  & Fengyuan Yang
  • Article
    | Open Access

    One challenge for spin-based electronics is the controlled and reliable switching of magnetization without magnetic fields. Here, Liu et al investigate a variety of compositions of CoPt, and determine the specific composition to maximize switching performance, potentially simplifying device design.

    • Liang Liu
    • , Chenghang Zhou
    •  & Jingsheng Chen
  • Article
    | Open Access

    Skyrmions, topological spin textures, can be pinned by defects present in the material that hosts them, influencing their motion. Here, Gruber et al show that the skyrmions are pinned at their boundary where the finite size of the skyrmions governs their pinning, and they demonstrate that certain pinning sites can switched on and off in-situ.

    • Raphael Gruber
    • , Jakub Zázvorka
    •  & Mathias Kläui
  • Article
    | Open Access

    Self-organizing maps are data mining tools for unsupervised learning algorithms dealing with big data problems. The authors experimentally demonstrate a memristor-based self-organizing map that is more efficient in computing speed and energy consumption for data clustering, image processing and solving optimization problems.

    • Rui Wang
    • , Tuo Shi
    •  & Ming Liu
  • Article
    | Open Access

    While great progress has been made in the applications of machine learning models, training them on conventional computing hardware is an energy intensive process. Here, Mehta et al present an adaptive synaptic array offering considerable improvements in the energy efficiency of training.

    • Darshit Mehta
    • , Mustafizur Rahman
    •  & Shantanu Chakrabartty
  • Article
    | Open Access

    Electrical manipulation of antiferromagnetic order is crucial for future memory devices, but existing switching schemes require a large current density. Here, the authors achieve record low current density switching in FeRh by taking advantage of its antiferromagnetic to ferromagnetic phase transition.

    • Hao Wu
    • , Hantao Zhang
    •  & Kang L. Wang
  • Article
    | Open Access

    Antiferromagnets offer the potential for higher speed and density than ferromagnetic materials for spintronic devices. Here, Reimers et al study the domain structure of CuMnAs, demonstrating the role of defects in stabilizing the location and orientation of antiferromagnetic domain walls.

    • Sonka Reimers
    • , Dominik Kriegner
    •  & Kevin W. Edmonds
  • Article
    | Open Access

    Ferroelectric ordering of water has been at the heart of intense debates due to its importance in enhancing our understanding of the condensed matter. Here, the authors observe ferroelectric properties of water ice in a two dimensional phase under confinement between two graphene layers.

    • Hao-Ting Chin
    • , Jiri Klimes
    •  & Ya-Ping Hsieh
  • Article
    | Open Access

    A major challenge in magnon based approaches to information processing lies in developing valves to allow or supress the magnon signal. Here, Chen et al demonstrate a van der Waals magnet based magnon valve which can be tuned electrically over an exceptionally wide range.

    • Guangyi Chen
    • , Shaomian Qi
    •  & Jian-Hao Chen
  • Article
    | Open Access

    It remains challenging to integrate topological insulators (TI) with magnetic tunnel junctions (MTJ) for spintronics applications. Here, the authors achieve a large tunneling magnetoresistance ratio and a low switching current density in a TI-MTJ device at room temperature, very promising for TI-driven magnetic memory.

    • Hao Wu
    • , Aitian Chen
    •  & Kang L. Wang
  • Article
    | Open Access

    Resistive switching usually occurs by the formation of conducting filaments in the direction of current flow. Here the authors study an intriguing type of volatile metal-to-insulator resistive switching in (La,Sr)MnO3, which occurs by the formation of an insulating barrier perpendicular to the current.

    • Pavel Salev
    • , Lorenzo Fratino
    •  & Ivan K. Schuller
  • Article
    | Open Access

    Switching of ferrimagnets by current-induced spin-orbit torque is promising for spintronics, due to their high-speed dynamics and small macroscopic magnetization. Switching of perpendicularly magnetized materials, however, requires a bias field for symmetry breaking. Here, Zheng et al demonstrate field-free current-induced switching of perpendicular ferrimagnets, using a compositional gradient-driven Dzyaloshinskii–Moriya interaction.

    • Zhenyi Zheng
    • , Yue Zhang
    •  & Pedram Khalili Amiri
  • Article
    | Open Access

    Anti-ferromagnetic based memories have a wide range of advantages over their ferromagnetic counterparts, however, their electrical signatures of switching are complicated by spurious signals. Here, Arpaci et al demonstrate an experimental method to distinguish between anti-ferromagnetic switching, and such spurious signatures.

    • Sevdenur Arpaci
    • , Victor Lopez-Dominguez
    •  & Pedram Khalili Amiri
  • Article
    | Open Access

    In molecular junctions, where a molecule is placed between two electrodes, the current passed decays exponentially as a function of length. Here, Chen et al. show that this exponentially attenuation can be controlled by changing a single atom at the end of the molecular wire.

    • Xiaoping Chen
    • , Bernhard Kretz
    •  & Christian A. Nijhuis
  • Article
    | Open Access

    Wireless implantable medical devices (IMDs) are hamstrung by both size and efficiency required for wireless power transfer. Here, Zaeimbashi et al. present a magnetoelectric nano-electromechanical systems that can harvest energy and sense weak magnetic fields like those arising from neural activity.

    • Mohsen Zaeimbashi
    • , Mehdi Nasrollahpour
    •  & Nian X. Sun
  • Article
    | Open Access

    Exploiting delocalized organic polaritons for enhanced exciton harvesting has been advantageous for organic optoelectronic with planar heterojunctions. Here, the authors report polariton-assisted excitation energy channeling in organic heterojunctions coupled to the same cavity mode.

    • Mao Wang
    • , Manuel Hertzog
    •  & Karl Börjesson
  • Article
    | Open Access

    High-frequency rectifiers at terahertz regime are pivotal components in modern communication, whereas the drawbacks in semiconductor junctions-based devices inhibit their usages. Here, the authors report electromagnetic rectification with high signal-to-noise ratio driven by chiral Bloch-electrons in type-II Dirac semimetal NiTe2-based device allowing for efficient THz detection.

    • Libo Zhang
    • , Zhiqingzi Chen
    •  & Wei Lu
  • Article
    | Open Access

    Human-like robotic sensing aims at extracting and processing complicated environmental information via multisensory integration and interaction. Tan et al. report an artificial spiking multisensory neural network that integrates five primary senses and mimics the crossmodal perception of biological brains.

    • Hongwei Tan
    • , Yifan Zhou
    •  & Sebastiaan van Dijken
  • Article
    | Open Access

    Measuring real time magnetization dynamics resulting from Hall effects is hard due to the small signal size. Here Sala et al demonstrate a method of performing Hall resistance measurements with sub-ns resolution, and use it to investigate the switching of GdFeCo dots induced by spin-orbit torques.

    • G. Sala
    • , V. Krizakova
    •  & P. Gambardella
  • Article
    | Open Access

    Goto et al present a bolometer based around the heat generation in magnetic tunnel junctions under auto-oscillation conditions. Unlike superconducting bolometers, the presented device operates at room temperature and sub-GHz frequencies, opening possibilities for use in microwave devices.

    • Minori Goto
    • , Yuma Yamada
    •  & Yoshishige Suzuki
  • Article
    | Open Access

    Operating donor-based quantum computers in silicon is hindered by the dependence of inter-qubit coupling on the precise donor position. Here, the authors show controlled rotation operation on exchange-coupled electron spins in the weak-exchange regime, loosening the requirements on positioning precision.

    • Mateusz T. Ma̧dzik
    • , Arne Laucht
    •  & Andrea Morello
  • Article
    | Open Access

    Hitherto, only circularly polarized antiferromagnetic (AFM) spin-waves (SWs) were expected to convey spin-information. Here, the authors present persistent spin-transport over long distances in the easy-plane AFM phase of hematite, α-Fe2O3, via linearly polarized SW pairs with ultra-low damping.

    • R. Lebrun
    • , A. Ross
    •  & M. Kläui
  • Article
    | Open Access

    Though reducing non-emissive triplet excited-states using quenchers effectively improves organic semiconductor laser diode (OSLD) performance, existing quenchers are not suitable for devices. Here, the authors designed a solid-state triplet quencher for OSLD under optical and electrical excitation.

    • Van T. N. Mai
    • , Viqar Ahmad
    •  & Shih-Chun Lo
  • Article
    | Open Access

    Designing ultra-low-power sensing and data-logging techniques with battery-free operation of sensor nodes remains a challenge. Here, the authors present a self-powered sensor-data-logger device that records a cumulative measure of the sensor signal intensity over its entire duration.

    • Darshit Mehta
    • , Kenji Aono
    •  & Shantanu Chakrabartty
  • Article
    | Open Access

    Topological phases with knotted configurations in momentum space have been challenging to realize. Here, Lee et al. provide a systematic design and measurement of a three-dimensional knotted nodal structure, and resolve its momentum space drumhead states via a topolectrical RLC-type circuit.

    • Ching Hua Lee
    • , Amanda Sutrisno
    •  & Ronny Thomale
  • Article
    | Open Access

    The development of high-performance magnetic field sensors is important for magnetic sensing and imaging. Here, the authors fabricate Hall sensors from graphene encapsulated in hBN and few-layer graphite, demonstrating high performance over a wide range of temperature and background magnetic field.

    • Brian T. Schaefer
    • , Lei Wang
    •  & Katja C. Nowack
  • Article
    | Open Access

    Spin Hall nano-oscillators can be tuned via magnetic fields and the drive current, but individual oscillator control in large arrays remains a challenge. Here, the authors provide individual control of the threshold current and the auto-oscillation frequency by voltage-controlled magnetic anisotropy.

    • Himanshu Fulara
    • , Mohammad Zahedinejad
    •  & Johan Åkerman
  • Article
    | Open Access

    Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe2/Fe3GeTe2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm−2.

    • Yingying Wu
    • , Senfu Zhang
    •  & Kang L. Wang
  • Article
    | Open Access

    Bipolar conductivity is fundamental for electronic devices based on two-dimensional semiconductors. Here, the authors report on-demand p- and n-doping of monolayer MoS2 via defects engineering using thermochemical scanning probe lithography, and achieve a p-n junction with rectification ratio over 104.

    • Xiaorui Zheng
    • , Annalisa Calò
    •  & Elisa Riedo
  • Article
    | Open Access

    On-chip optical-field emission devices may be useful for fast electronics and signal processing. Here the authors show a compact on-chip light phase detector capable of monitoring photocurrents oscillating at optical frequencies using electrically connected arrays of plasmonic bow-tie nanoantennae.

    • Yujia Yang
    • , Marco Turchetti
    •  & Phillip D. Keathley