Corrosion articles within Nature Chemistry

Featured

  • Article |

    Developing a stable metallic lithium anode is necessary for next-generation batteries; however, lithium is prone to corrosion, a process that must be better understood if practical devices are to be created. A Kirkendall-type mechanism of lithium corrosion has now been observed. The corrosion is fast and is governed by a galvanic process.

    • Dingchang Lin
    • , Yayuan Liu
    •  & Yi Cui
  • Article |

    The use of Li or Na as electrodes in Li-Na alloy–O2 batteries creates formidable challenges for both safety and stability because of their oxidative corrosion and the growth of dendrites and cracks on their surface. Now, an aprotic bimetal Li-Na alloy–O2 battery with high cycling stability has been developed using a Li-Na eutectic alloy anode and an electrolyte additive.

    • Jin-ling Ma
    • , Fan-lu Meng
    •  & Qing Jiang
  • Article |

    Li+-selective solid electrolytes may enable next-generation battery systems, such as Li–S and Li–O2. Now, in an exemplar system, it is shown that a resistive interphase forms at the interface between solid and liquid electrolytes, termed the solid-liquid electrolyte interphase (SLEI). An in situ study of this undesirable effect is supported by state-of-the-art surface analysis.

    • Martin R. Busche
    • , Thomas Drossel
    •  & Jürgen Janek