Cardiac device therapy articles within Nature Communications

Featured

  • Article
    | Open Access

    Advancements in congenital heart surgery stress the need for durable biomaterials. Here, the authors compare tissue-engineered vascular grafts (TEVGs) with traditional polytetrafluoroethylene grafts, revealing TEVGs’ superior durability and reduced calcification, promising improved long-term success for surgeries.

    • Mackenzie E. Turner
    • , Kevin M. Blum
    •  & Christopher K. Breuer
  • Article
    | Open Access

    Harvesting biomechanical energy from cardiac motion is an attractive power source for implantable bioelectronic devices. Here, the authors report a battery-free, transcatheter, self-powered intracardiac pacemaker for the treatment of arrhythmia in large animal models.

    • Zhuo Liu
    • , Yiran Hu
    •  & Zhong Lin Wang
  • Article
    | Open Access

    No preventive treatment addresses the underlying condition that leads to cardiac arrest. Here, researchers developed an injectable hydrogel electrode that achieves pacing that mimics physiological conduction with the potential to eliminate lethal arrhythmias and provide painless defibrillation.

    • Gabriel J. Rodriguez-Rivera
    • , Allison Post
    •  & Elizabeth Cosgriff-Hernandez
  • Article
    | Open Access

    Flexible electronic hydrogels that allow conformal tissue integration, online precision diagnosis, and simultaneous tissue regeneration are desired for advancing the treatment of myocardial infarction. Here, the authors report a chronological adhesive hydrogel patch integrating diagnostic and therapeutic functions through mechanophysiological monitoring and electrocoupling therapy.

    • Chaojie Yu
    • , Mingyue Shi
    •  & Junjie Li
  • Article
    | Open Access

    Self-powered implantable devices have the potential to extend device operation, though current energy harvesters are both insufficient and inconvenient. Here the authors report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator based on body motion and gravity that can be used to charge a lithium-ion battery and integrated into a cardiac pacemaker.

    • Hanjun Ryu
    • , Hyun-moon Park
    •  & Sang-Woo Kim
  • Article
    | Open Access

    Many patients, following therapy for acute myocardial infarction, develop adverse cardiac remodelling. Here the authors present injectable recombinant human collagen 10 of 10 type I and III matrices that are able to limit adverse remodelling and improve function of the myocardium.

    • Sarah McLaughlin
    • , Brian McNeill
    •  & Emilio I. Alarcon
  • Article
    | Open Access

    Implantable medical electronic devices are limited by battery lifetime and inflexibility, but self-powered devices can harvest biomechanical energy. Here the authors demonstrate cardiac pacing and correction of sinus arrhythmia with a symbiotic cardiac pacemaker, which is an implanted self-powered pacing system powered by cardiac motion, in a swine.

    • Han Ouyang
    • , Zhuo Liu
    •  & Zhou Li