Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Caspase-2: an orphan enzyme out of the shadows

Abstract

Caspase-2 has been embodied as an initiator or executioner protease in diverse apoptotic scenarios. However, accumulating evidence is challenging this view, pertaining to its true role. The enzyme’s catalytic activity is currently implicated in various functions required for correct cell proliferation, such as counteracting genomic instability, as well as suppressing tumorigenesis. Here, apart from summarizing the latest observations in caspase-2-related research, we make an attempt to reconcile these findings and discuss their implications for future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2013; 32: 325–340.

    Article  Google Scholar 

  2. Zhivotovsky B, Kroemer G . Apoptosis and genomic instability. Nat Rev Mol Cell Biol 2004; 5: 752–762.

    Article  CAS  Google Scholar 

  3. Gordon DJ, Resio B, Pellman D . Causes and consequences of aneuploidy in cancer. Nat Rev Genet 2012; 13: 189–203.

    Article  CAS  Google Scholar 

  4. Fava LL, Bock FJ, Geley S, Villunger A . Caspase-2 at a glance. J Cell Sci 2012; 125: 5911–5915.

    Article  CAS  Google Scholar 

  5. Bouchier-Hayes L, Green DR . Caspase-2: the orphan caspase. Cell Death Differ 2012; 19: 51–57.

    Article  CAS  Google Scholar 

  6. Ho LH, Taylor R, Dorstyn L, Cakouros D, Bouillet P, Kumar S . A tumor suppressor function for caspase-2. Proc Natl Acad Sci USA 2009; 106: 5336–5341.

    Article  CAS  Google Scholar 

  7. Manzl C, Peintner L, Krumschnabel G, Bock F, Labi V, Drach M et al. PIDDosome-independent tumor suppression by caspase-2. Cell Death Differ 2012; 19: 1722–1732.

    Article  CAS  Google Scholar 

  8. Parsons MJ, McCormick L, Janke L, Howard A, Bouchier-Hayes L, Green DR . Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ 2013; 20: 1174–1182.

    Article  CAS  Google Scholar 

  9. Puccini J, Shalini S, Voss AK, Gatei M, Wilson CH, Hiwase DK et al. Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice. Proc Natl Acad Sci USA 2013; 110: 19920–19925.

    Article  CAS  Google Scholar 

  10. Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD et al. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis 2014; 5: e1383.

    Article  CAS  Google Scholar 

  11. Yao Y, Dai W . Genomic instability and cancer. J Carcinog Mutagen 2014; 5: 100016.

  12. Lee JK, Choi YL, Kwon M, Park PJ . Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu Rev Pathol 2016; 11: 283–312.

    Article  CAS  Google Scholar 

  13. Olsson M, Forsberg J, Zhivotovsky B . Caspase-2: the reinvented enzyme. Oncogene 2015; 34: 1877–1882.

    Article  CAS  Google Scholar 

  14. Puccini J, Dorstyn L, Kumar S . Caspase-2 as a tumour suppressor. Cell Death Differ 2013; 20: 1133–1139.

    Article  CAS  Google Scholar 

  15. Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier-Hayes L et al. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene 2017; 36: 2704–2714.

    Article  CAS  Google Scholar 

  16. Dorstyn L, Puccini J, Wilson CH, Shalini S, Nicola M, Moore S et al. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ 2012; 19: 1288–1298.

    Article  CAS  Google Scholar 

  17. Gitenay D, Lallet-Daher H, Bernard D . Caspase-2 regulates oncogene-induced senescence. Oncotarget 2014; 5: 5845–5847.

    Article  Google Scholar 

  18. Dawar S, Shahrin NH, Sladojevic N, D'Andrea RJ, Dorstyn L, Hiwase DK et al. Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice. Cell Death Dis 2016; 7: e2509.

    Article  CAS  Google Scholar 

  19. Vakifahmetoglu H, Olsson M, Orrenius S, Zhivotovsky B . Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene 2006; 25: 5683–5692.

    Article  CAS  Google Scholar 

  20. Tinel A, Tschopp J . The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304: 843–846.

    Article  CAS  Google Scholar 

  21. Manzl C, Krumschnabel G, Bock F, Sohm B, Labi V, Baumgartner F et al. Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 2009; 185: 291–303.

    Article  CAS  Google Scholar 

  22. Ribe EM, Jean YY, Goldstein RL, Manzl C, Stefanis L, Villunger A et al. Neuronal caspase 2 activity and function requires RAIDD, but not PIDD. Biochem J 2012; 444: 591–599.

    Article  CAS  Google Scholar 

  23. Kim IR, Murakami K, Chen NJ, Saibil SD, Matysiak-Zablocki E, Elford AR et al. DNA damage- and stress-induced apoptosis occurs independently of PIDD. Apoptosis 2009; 14: 1039–1049.

    Article  CAS  Google Scholar 

  24. Oliver TG, Meylan E, Chang GP, Xue W, Burke JR, Humpton TJ et al. Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 2011; 43: 57–71.

    Article  CAS  Google Scholar 

  25. Terry MR, Arya R, Mukhopadhyay A, Berrett KC, Clair PM, Witt B et al. Caspase-2 impacts lung tumorigenesis and chemotherapy response in vivo. Cell Death Differ 2015; 22: 719–730.

    Article  CAS  Google Scholar 

  26. Fava LL, Schuler F, Sladky V, Haschka MD, Soratroi C, Eiterer L et al. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 2017; 31: 34–45.

    Article  CAS  Google Scholar 

  27. Ho LH, Read SH, Dorstyn L, Lambrusco L, Kumar S . Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene 2008; 27: 3393–3404.

    Article  CAS  Google Scholar 

  28. Lopez-Garcia C, Sansregret L, Domingo E, McGranahan N, Hobor S, Birkbak NJ et al. BCL9L dysfunction impairs caspase-2 expression permitting aneuploidy tolerance in colorectal cancer. Cancer Cell 2017; 31: 79–93.

    Article  CAS  Google Scholar 

  29. Shalini S, Puccini J, Wilson CH, Finnie J, Dorstyn L, Kumar S . Caspase-2 protects against oxidative stress in vivo. Oncogene 2015; 34: 4995–5002.

    Article  CAS  Google Scholar 

  30. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G . Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004; 23: 2825–2837.

    Article  CAS  Google Scholar 

  31. Imreh G, Norberg HV, Imreh S, Zhivotovsky B . Chromosomal breaks during mitotic catastrophe trigger gammaH2AX-ATM-p53-mediated apoptosis. J Cell Sci 2011; 124: 2951–2963.

    Article  CAS  Google Scholar 

  32. Bataller M, Mendez C, Salas JA, Portugal J . Mithramycin SK modulates polyploidy and cell death in colon carcinoma cells. Mol Cancer Ther 2008; 7: 2988–2997.

    Article  CAS  Google Scholar 

  33. Ohashi A . Different cell fates after mitotic slippage: from aneuploidy to polyploidy. Mol Cell Oncol 2015; 3: e1088503.

    Article  Google Scholar 

  34. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun 2015; 6: 7668.

    Article  Google Scholar 

  35. Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 2004; 23: 4362–4370.

    Article  CAS  Google Scholar 

  36. Vitale I, GM, Castedo M, Kroemer G . Caspase 2 in mitotic catastrophe: the terminator of aneuploid and tetraploid cells. Mol Cell Oncol 2017 (in press).

  37. Blume SW, Snyder RC, Ray R, Thomas S, Koller CA, Miller DM . Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J Clin Invest 1991; 88: 1613–1621.

    Article  CAS  Google Scholar 

  38. Albertini V, Jain A, Vignati S, Napoli S, Rinaldi A, Kwee I et al. Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy. Nucleic Acids Res 2006; 34: 1721–1734.

    Article  CAS  Google Scholar 

  39. Peintner L, Dorstyn L, Kumar S, Aneichyk T, Villunger A, Manzl C . The tumor-modulatory effects of caspase-2 and Pidd1 do not require the scaffold protein Raidd. Cell Death Differ 2015; 22: 1803–1811.

    Article  CAS  Google Scholar 

  40. Ren K, Lu J, Porollo A, Du C . Tumor-suppressing function of caspase-2 requires catalytic site Cys-320 and site Ser-139 in mice. J Biol Chem 2012; 287: 14792–14802.

    Article  CAS  Google Scholar 

  41. Andersen JL, Johnson CE, Freel CD, Parrish AB, Day JL, Buchakjian MR et al. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. EMBO J 2009; 28: 3216–3227.

    Article  CAS  Google Scholar 

  42. Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 2005; 123: 89–103.

    Article  CAS  Google Scholar 

  43. Lavrik IN, Golks A, Baumann S, Krammer PH . Caspase-2 is activated at the CD95 death-inducing signaling complex in the course of CD95-induced apoptosis. Blood 2006; 108: 559–565.

    Article  CAS  Google Scholar 

  44. Mendelsohn AR, Hamer JD, Wang ZB, Brent R . Cyclin D3 activates caspase 2, connecting cell proliferation with cell death. Proc Natl Acad Sci USA 2002; 99: 6871–6876.

    Article  CAS  Google Scholar 

  45. Guha M, Xia F, Raskett CM, Altieri DC . Caspase 2-mediated tumor suppression involves survivin gene silencing. Oncogene 2010; 29: 1280–1292.

    Article  CAS  Google Scholar 

  46. Tiwari M, Sharma LK, Vanegas D, Callaway DA, Bai Y, Lechleiter JD et al. A nonapoptotic role for CASP2/caspase 2: modulation of autophagy. Autophagy 2014; 10: 1054–1070.

    Article  CAS  Google Scholar 

  47. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy 2017; 13: 739–753.

    Article  CAS  Google Scholar 

  48. Yang ZJ, Chee CE, Huang S, Sinicrope FA . The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011; 10: 1533–1541.

    Article  CAS  Google Scholar 

  49. Biffi G, Tuveson DA . Cancer: double trouble for tumours. Nature 2017; 542: 34–35.

    Article  CAS  Google Scholar 

  50. Dey P, Baddour J, Muller F, Wu CC, Wang H, Liao WT et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 2017; 542: 119–123.

    Article  CAS  Google Scholar 

  51. McCoy F, Darbandi R, Lee HC, Bharatham K, Moldoveanu T, Grace CR et al. Metabolic activation of CaMKII by coenzyme A. Mol Cell 2013; 52: 325–339.

    Article  CAS  Google Scholar 

  52. McCoy F, Darbandi R, Chen SI, Eckard L, Dodd K, Jones K et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem 2013; 288: 8838–8848.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in the authors’ laboratories is supported by grants from the Swedish and Stockholm Cancer Societies, the Swedish Childhood Cancer Foundation, the Swedish Research Council. BZ was supported by the Russian Science Foundation (14-25-00056-II) and the Russian President Fund (grant number NSH-7082.2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Zhivotovsky.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsberg, J., Zhivotovsky, B. & Olsson, M. Caspase-2: an orphan enzyme out of the shadows. Oncogene 36, 5441–5444 (2017). https://doi.org/10.1038/onc.2017.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.169

This article is cited by

Search

Quick links