Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies

Abstract

Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kopan R, Ilagan MX . The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S . The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 2012; 13: 654–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andersson ER, Sandberg R, Lendahl U . Notch signaling: simplicity in design, versatility in function. Development 2011; 138: 3593–3612.

    Article  CAS  PubMed  Google Scholar 

  4. Fryer CJ, White JB, Jones KA . Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16: 509–520.

    Article  CAS  PubMed  Google Scholar 

  5. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  6. Gordon WR, Roy M, Vardar-Ulu D, Garfinkel M, Mansour MR, Aster JC et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood 2009; 113: 4381–4390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malecki MJ, Sanchez-Irizarry C, Mitchell JL, Histen G, Xu ML, Aster JC et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 2006; 26: 4642–4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ntziachristos P, Lim JS, Sage J, Aifantis I . From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 2014; 25: 318–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ranganathan P, Weaver KL, Capobianco AJ . Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 2011; 11: 338–351.

    Article  CAS  PubMed  Google Scholar 

  10. Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 2011; 17: 1646–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stoeck A, Lejnine S, Truong A, Pan L, Wang H, Zang C et al. Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov 2014; 4: 1154–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stephens PJ, Davies HR, Mitani Y, Van Loo P, Shlien A, Tarpey PS et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest 2013; 123: 2965–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet 2013; 45: 791–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakayama K, Nakayama N, Jinawath N, Salani R, Kurman RJ, Shih Ie M et al. Amplicon profiles in ovarian serous carcinomas. Int J Cancer 2007; 120: 2613–2617.

    Article  CAS  PubMed  Google Scholar 

  15. Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J, Getz G et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 2009; 15: 1417–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  17. Aster JC, Blacklow SC . Targeting the Notch pathway: twists and turns on the road to rational therapeutics. J Clin Oncol 2012; 30: 2418–2420.

    Article  CAS  PubMed  Google Scholar 

  18. Vooijs M, Liu Z, Kopan R . Notch: architect, landscaper, and guardian of the intestine. Gastroenterology 2011; 141: 448–459.

    Article  PubMed  Google Scholar 

  19. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000; 14: 1343–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huppert SS, Le A, Schroeter EH, Mumm JS, Saxena MT, Milner LA et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 2000; 405: 966–970.

    Article  CAS  PubMed  Google Scholar 

  21. Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK . Essential role of endothelial Notch1 in angiogenesis. Circulation 2005; 111: 1826–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 2001; 128: 491–502.

    CAS  PubMed  Google Scholar 

  23. Krebs LT, Xue Y, Norton CR, Sundberg JP, Beatus P, Lendahl U et al. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 2003; 37: 139–143.

    Article  CAS  PubMed  Google Scholar 

  24. Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 2004; 18: 2730–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu X, Choi SH, Hu T, Tiyanont K, Habets R, Groot AJ et al. Insights into autoregulation of Notch3 from structural and functional studies of its negative regulatory region. Structure 2015; 23: 1227–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aste-Amezaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PloS One 2010; 5: e9094.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 2009; 27: 1025–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Z, Gerstein M, Snyder M . RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10: 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prassler J, Steidl S, Urlinger S . In vitro affinity maturation of HuCAL antibodies: complementarity determining region exchange and RapMAT technology. Immunotherapy 2009; 1: 571–583.

    CAS  PubMed  Google Scholar 

  31. Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M et al. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 2011; 413: 261–278.

    Article  CAS  PubMed  Google Scholar 

  32. Rauchenberger R, Borges E, Thomassen-Wolf E, Rom E, Adar R, Yaniv Y et al. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J Biol Chem 2003; 278: 38194–38205.

    Article  CAS  PubMed  Google Scholar 

  33. Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem 2008; 283: 8046–8054.

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi N, Oyama T, Ito E, Satoh H, Azuma S, Hayashi M et al. NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res 2008; 68: 1881–1888.

    Article  CAS  PubMed  Google Scholar 

  35. Gordon WR, Vardar-Ulu D, L'Heureux S, Ashworth T, Malecki MJ, Sanchez-Irizarry C et al. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PloS One 2009; 4: e6613.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010; 464: 1052–1057.

    Article  CAS  PubMed  Google Scholar 

  37. Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC . Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 2007; 14: 295–300.

    Article  CAS  PubMed  Google Scholar 

  38. Chiang MY, Xu L, Shestova O, Histen G, L'Heureux S, Romany C et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J Clin Invest 2008; 118: 3181–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000; 19: 3337–3348.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tiyanont K, Wales TE, Siebel CW, Engen JR, Blacklow SC . Insights into Notch3 activation and inhibition mediated by antibodies directed against its negative regulatory region. J Mol Biol 2013; 425: 3192–3204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang K, Zhang Q, Li D, Ching K, Zhang C, Zheng X et al. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a gamma-secretase inhibitor. Clin Cancer Res 2015; 21: 1487–1496.

    Article  PubMed  Google Scholar 

  42. Kluk MJ, Ashworth T, Wang H, Knoechel B, Mason EF, Morgan EA et al. Gauging NOTCH1 activation in cancer using immunohistochemistry. PloS One 2013; 8: e67306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  44. Ramasamy SK, Kusumbe AP, Wang L, Adams RH . Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 2014; 507: 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  46. Berman H, Henrick K, Nakamura H . Announcing the worldwide protein data bank. Nat Struct Biol 2003; 10: 980.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The JAGGED1 and DLL1 expressing cell lines were kindly provide by Dr Gerry Weinmaster (UCLA). HPB-ALL cells were kindly provided by Andreas Stasser (Walter and Eliza Hall Institute for Medical Research, Australia). We thank the Novartis Biologics Center including Thomas Pietzonka, Janine Shulok, Nadine Charara, Bill Tschantz and Tony Fleming. We also thank many senior Novartis leaders for supporting this project, including Jeff Porter and William Sellers. We thank Rajiv Chopra and Kirk Clark of Novartis Institutes for BioMedical Research for the instructive discussion on crystallography experiments. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman–Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was financially supported in part by the Dana Farber–Novartis DDP, and grants from the National Institutes of Health (P01 CA119070) and the Leukemia and Lymphoma Society (7003-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Fryer.

Ethics declarations

Competing interests

P Bernasconi-Elias, T Hu, B Firestone, S Gans, E Kurth, P Capodieci, P LeMotte, A London, E Nolin, M Jones, K Slocum, are employees of Novartis Institutes for Biomedical Research. J Deplazes-Lauber, K Petropoulos, J Jaehrling are employees of MorphoSys AG. S Blacklow serves as a consultants for Novartis and receives research support through the Dana Farber–Novartis DDP. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernasconi-Elias, P., Hu, T., Jenkins, D. et al. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies. Oncogene 35, 6077–6086 (2016). https://doi.org/10.1038/onc.2016.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.133

This article is cited by

Search

Quick links