Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Arrestin2 modulates androgen receptor activation

Subjects

Abstract

Androgen receptor (AR) has a pivotal role in the growth and survival of prostate cancer (PCa). Arrestin2 (Arr2) is a ubiquitous scaffolding/adaptor protein first characterized as a regulator of G protein-coupled receptor signaling. In this study, we report that Arr2 additionally functions as a positive regulator of AR expression and function in PCa cells. Expression level of Arr2 correlates with that of AR, and knockdown of Arr2 inhibits the expression of AR and its effectors prostate-specific antigen, transmembrane protease serine 2, FK506-binding protein 51 and fatty acid synthase. Mechanistically, the knockdown of Arr2 attenuates the binding of AR to androgen response elements and consequently decreases transcription of AR-regulated genes. The inhibition of AR by Arr2 knockdown occurs in both androgen-dependent and castration-resistant PCa (CRPC) cells, although the effect is more prominent in CRPC. Arr2 knockdown inhibits the in vitro CRPC cell proliferation, prostasphere growth and invasion, as well as the in vivo prostate tumor formation, local invasion and distant metastasis. These results illustrate a new role for Arr2 in the expression and activation of AR and its potential relevance as a target for therapeutic intervention and monitoring of disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  Google Scholar 

  2. Attard G, Richards J, de Bono JS . New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway. Clin Cancer Res 2011; 17: 1649–1657.

    Article  CAS  Google Scholar 

  3. Chen Y, Sawyers CL, Scher HI . Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol 2008; 8: 440–448.

    Article  CAS  Google Scholar 

  4. Debes JD, Tindall DJ . Mechanisms of androgen-refractory prostate cancer. N Engl J Med 2004; 351: 1488–1490.

    Article  CAS  Google Scholar 

  5. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Article  Google Scholar 

  6. Saraon P, Jarvi K, Diamandis EP . Molecular alterations during progression of prostate cancer to androgen independence. Clin Chem 2011; 57: 1366–1375.

    Article  CAS  Google Scholar 

  7. Lamont KR, Tindall DJ . Androgen regulation of gene expression. Adv Cancer Res 2010; 107: 137–162.

    Article  CAS  Google Scholar 

  8. Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S, Kouzmenko A et al. The androgen receptor in health and disease. Annu Rev Physiol 2013; 75: 201–224.

    Article  CAS  Google Scholar 

  9. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  CAS  Google Scholar 

  10. Lefkowitz RJ, Whalen EJ . βArrestins: traffic cops of cell signaling. Curr Cin Cell Biol 2004; 16: 162–168.

    Article  CAS  Google Scholar 

  11. Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ . βArrestin inhibits NF-κB activity by means of its interaction with the NF-κB inhibitor IκBα. Proc Natl Acad Sci USA 2004; 101: 8603–8607.

    Article  CAS  Google Scholar 

  12. Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP et al. βArrestin2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 2003; 301: 1394–1397.

    Article  CAS  Google Scholar 

  13. Ma L, Pei G . βArrestin signaling and regulation of transcription. J Cell Sci 2007; 120: 213–218.

    Article  CAS  Google Scholar 

  14. Lakshmikanthan V, Zou L, Kim JI, Michal A, Nie Z, Messias NC et al. Identification of βArrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc Natl Acad Sci USA 2009; 106: 9379–9384.

    Article  CAS  Google Scholar 

  15. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE et al. Dishevelled 2 recruits βArrestin2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 2003; 301: 1391–1394.

    Article  CAS  Google Scholar 

  16. Wilbanks AM, Fralish GB, Kirby ML, Barak LS, Li YX, Caron MG . βArrestin2 regulates zebrafish development through the hedgehog signaling pathway. Science 2004; 306: 2264–2267.

    Article  CAS  Google Scholar 

  17. Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S et al. Differential nucleocytoplasmic shuttling of βArrestins: characterization of a leucine-rich nuclear export signal in βArrestin2. J Biol Chem 2002; 277: 37693–37701.

    Article  CAS  Google Scholar 

  18. Wang P, Wu Y, Ge X, Ma L, Pei G . Subcellular localization of βArrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 2003; 278: 11648–11653.

    Article  CAS  Google Scholar 

  19. Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM, DuBois RN . Role of βArrestin1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci USA 2006; 103: 1492–1497.

    Article  CAS  Google Scholar 

  20. Zou L, Yang R, Chai J, Pei G . Rapid xenograft tumor progression in βArrestin1 transgenic mice due to enhanced tumor angiogenesis. FASEB J 2008; 22: 355–364.

    Article  CAS  Google Scholar 

  21. Wang LG, Su BH, Du JJ . Expression of βArrestin1 in gastric cardiac adenocarcinoma and its relation with progression. Asian Pac J Cancer Prev 2012; 13: 5671–5675.

    Article  Google Scholar 

  22. Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK et al. Functional specialization of βArrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci USA 2007; 104: 12011–12016.

    Article  CAS  Google Scholar 

  23. Gregory CW, Johnson RT Jr., Mohler JL, French FS, Wilson EM . Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 2001; 61: 2892–2898.

    CAS  Google Scholar 

  24. Shang Y, Myers M, Brown M . Formation of the androgen receptor transcription complex. Mol Cell 2002; 9: 601–610.

    Article  CAS  Google Scholar 

  25. Hara T, Miyazaki H, Lee A, Tran CP, Reiter RE . Androgen receptor and invasion in prostate cancer. Cancer Res 2008; 68: 1128–1135.

    Article  CAS  Google Scholar 

  26. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 2012; 10: 29.

    Article  CAS  Google Scholar 

  27. Balk SP . Androgen receptor as a target in androgen-independent prostate cancer. Urology 2002; 60: 132–138; discussion 138–139.

    Article  Google Scholar 

  28. Feldman BJ, Feldman D . The development of androgen-independent prostate cancer. Nat Rev Cancer 2001; 1: 34–45.

    Article  CAS  Google Scholar 

  29. Chen Y, Liu Z, Halterman DA . Molecular determinants of resistance activation and suppression by phytophthora infestans effector IPI-O. PLoS Pathogen 2012; 8: e1002595.

    Article  CAS  Google Scholar 

  30. Boorjian SA, Heemers HV, Frank I, Farmer SA, Schmidt LJ, Sebo TJ et al. Expression and significance of androgen receptor coactivators in urothelial carcinoma of the bladder. Endocr Relat Cancer 2009; 16: 123–137.

    Article  CAS  Google Scholar 

  31. Tilley WD, Lim-Tio SS, Horsfall DJ, Aspinall JO, Marshall VR, Skinner JM . Detection of discrete androgen receptor epitopes in prostate cancer by immunostaining: Measurement by color video image analysis. Cancer Res 1994; 54: 4096–4102.

    CAS  PubMed  Google Scholar 

  32. Snoek R, Cheng H, Margiotti K, Wafa LA, Wong CA, Wong EC et al. In vivo knockdown of the androgen receptor results in growth inhibition and regression of well-established, castration-resistant prostate tumors. Clin Cancer Res 2009; 15: 39–47.

    Article  CAS  Google Scholar 

  33. Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A . Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 1995; 55: 3068–3072.

    CAS  PubMed  Google Scholar 

  34. Hoeppner CZ, Cheng N, Ye RD . Identification of a nuclear localization sequence in βArrestin1 and its functional implications. J Biol Chem 2012; 287: 8932–8943.

    Article  CAS  Google Scholar 

  35. Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M et al. A nuclear function of βArrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 2005; 123: 833–847.

    Article  CAS  Google Scholar 

  36. Shenoy SK, Han S, Zhao YL, Hara MR, Oliver T, Cao Y et al. βArrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene 2012; 31: 282–292.

    Article  CAS  Google Scholar 

  37. Mo W, Zhang L, Yang G, Zhai J, Hu Z, Chen Y et al. Nuclear βArrestin1 functions as a scaffold for the dephosphorylation of STAT1 and moderates the antiviral activity of IFNγ. Mol Cell 2008; 31: 695–707.

    Article  CAS  Google Scholar 

  38. Liu YN, Liu Y, Lee HJ, Hsu YH, Chen JH . Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol 2008; 28: 7096–7108.

    Article  CAS  Google Scholar 

  39. Rosano L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Spadaro F et al. βArrestin1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene 2013; 32: 5066–5077.

    Article  CAS  Google Scholar 

  40. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA . Spheroid-based drug screen: Considerations and practical approach. Nat Protoc 2009; 4: 309–324.

    Article  CAS  Google Scholar 

  41. Lang SH, Sharrard RM, Stark M, Villette JM, Maitland NJ . Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. Br J Cancer 2001; 85: 590–599.

    Article  CAS  Google Scholar 

  42. Harma V, Virtanen J, Makela R, Happonen A, Mpindi JP, Knuuttila M et al. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 2010; 5: e10431.

    Article  Google Scholar 

  43. Khaitan D, Chandna S, Arya MB, Dwarakanath BS . Establishment and characterization of multicellular spheroids from a human glioma cell line; implications for tumor therapy. J Transl Med 2006; 4: 12.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Eileen Grigson and Quais Hassan for technical assistance. We also thank Dr Zhongzhen Nie for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Daaka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purayil, H., Zhang, Y., Dey, A. et al. Arrestin2 modulates androgen receptor activation. Oncogene 34, 3144–3151 (2015). https://doi.org/10.1038/onc.2014.252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.252

This article is cited by

Search

Quick links