Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation

Abstract

The inducible proto-oncogenic (c-Fos:c-Jun)/AP-1 transcription complex binds 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive elements (TRE) in its target genes. It is tightly controlled at multiple levels to avoid the deleterious effects of its inappropriate activation. In particular, SUMOylation represses its transactivation capacity in transient reporter assays using constitutively expressed proteins. This led to the presumption that (c-Fos:c-Jun)/AP-1 SUMOylation would be required to turn-off transcription of its target genes, as proposed for various transcription factors. Instead, thanks to the generation of an antibody specific for SUMO-modified c-Fos, we provide here direct evidence that SUMOylated c-Fos is present on a stably integrated reporter TPA-inducible promoter at the onset of transcriptional activation and colocalizes with RNA polymerase II within chromatin. Interestingly, (c-Fos:c-Jun)/AP-1 SUMOylation limits reporter gene induction, as well as the appearance of active transcription-specific histone marks on its promoter. Moreover, non-SUMOylatable mutant (c-Fos:c-Jun)/AP-1 dimers accumulate to higher levels on their target promoter, suggesting that SUMOylation might facilitate the release of (c-Fos:c-Jun)/AP-1 from promoters. Finally, activation of GADD153, an AP-1 target gene, is also associated with a rapid increase in SUMOylation at the level of its TRE and c-Fos SUMOylation dampens its induction by TPA. Taken together, our data suggest that SUMOylation could serve to buffer transcriptional activation of AP-1 target genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  Google Scholar 

  2. Chinenov Y, Kerppola TK . Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20: 2438–2452.

    Article  CAS  Google Scholar 

  3. Jochum W, Passegué E, Wagner EF . AP-1 in mouse development and tumorigenesis. Oncogene 2001; 20: 2401–2412.

    Article  CAS  Google Scholar 

  4. Mechta-Grigoriou F, Gerald D, Yaniv M . The mammalian Jun proteins: redundancy and specificity. Oncogene 2001; 20: 2378–2389.

    Article  CAS  Google Scholar 

  5. Milde-Langosch K . The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 2005; 41: 2449–2461.

    Article  CAS  Google Scholar 

  6. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    Article  CAS  Google Scholar 

  7. Bossis G, Malnou CE, Farras R, Andermarcher E, Hipskind R, Rodriguez M et al. Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 2005; 25: 6964–6979.

    Article  CAS  Google Scholar 

  8. Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A . c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 2000; 275: 13321–13329.

    Article  CAS  Google Scholar 

  9. Geiss-Friedlander R, Melchior F . Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8: 947–956.

    Article  CAS  Google Scholar 

  10. Barry J, Lock RB . Small ubiquitin-related modifier-1: wrestling with protein regulation. Int J Biochem Cell Biol 2011; 43: 37–40.

    Article  CAS  Google Scholar 

  11. Bettermann K, Benesch M, Weis S, Haybaeck J . SUMOylation in carcinogenesis. Cancer Lett 2012; 316: 113–125.

    Article  CAS  Google Scholar 

  12. Gareau JR, Lima CD . The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11: 861–871.

    Article  CAS  Google Scholar 

  13. Garcia-Dominguez M, Reyes JC . SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim Biophys Acta 2009; 1789: 451–459.

    Article  CAS  Google Scholar 

  14. Rosonina E, Duncan SM, Manley JL . SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes Dev 2010; 24: 1242–1252.

    Article  CAS  Google Scholar 

  15. Liu H, Zhang J, Heine GF, Arora M, Ozer HG, Onti-Srinivasan R et al. Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes. Nucl. Acids Res 2012; 40: 10172–10186.

    Article  CAS  Google Scholar 

  16. Lyst MJ, Stancheva I . A role for SUMO modification in transcriptional repression and activation. Biochem Soc Trans 2007; 35 (Pt 6): 1389–1392.

    Article  CAS  Google Scholar 

  17. Flühmann B, Zimmermann U, Muff R, Bilbe G, Fischer JA, Born W . Parathyroid hormone responses of cyclic AMP-, serum- and phorbol ester-responsive reporter genes in osteoblast-like UMR-106 cells. Mol Cell Endocrinol 1998; 139: 89–98.

    Article  Google Scholar 

  18. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius K-J, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Meth 2006; 3: 995–1000.

    Article  Google Scholar 

  19. Bakiri L, Matsuo K, Wisniewska M, Wagner EF, Yaniv M . Promoter specificity and biological activity of tethered AP-1 dimers. Mol Cell Biol 2002; 22: 4952–4964.

    Article  CAS  Google Scholar 

  20. Rosonina E, Duncan SM, Manley JL . Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes Dev 2012; 26: 350–355.

    Article  CAS  Google Scholar 

  21. Guo B, Panagiotaki N, Warwood S, Sharrocks AD . Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Res 2011; 39: 6403–6413.

    Article  CAS  Google Scholar 

  22. Ubeda M, Vallejo M, Habener JF . CHOP Enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. Mol Cell Biol 1999; 19: 7589–7599.

    Article  CAS  Google Scholar 

  23. Guyton KZ, Xu Q, Holbrook NJ . Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J 1996; 314 (Pt 2): 547–554.

    Article  CAS  Google Scholar 

  24. Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M et al. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Meth 2007; 4: 245–250.

    Article  CAS  Google Scholar 

  25. Maison C, Bailly D, Roche D, Montes de Oca R, Probst AV, Vassias I et al. SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat Genet 2011; 43: 220–227.

    Article  CAS  Google Scholar 

  26. Kubota Y, O’Grady P, Saito H, Takekawa M . Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol 2011; 13: 282–291.

    Article  CAS  Google Scholar 

  27. Tempé D, Piechaczyk M, Bossis G . SUMO under stress. Biochem Soc Trans 2008; 36 (Pt 5): 874–878.

    Article  Google Scholar 

  28. Bossis G, Melchior F . Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 2006; 21: 349–357.

    Article  CAS  Google Scholar 

  29. Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A et al. System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2009; 2: ra24.

    Article  Google Scholar 

  30. Glatter T, Wepf A, Aebersold R, Gstaiger M . An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 2009; 5: 237.

    Article  Google Scholar 

  31. Gomard T, Michaud H-A, Tempé D, Thiolon K, Pelegrin M, Piechaczyk M . An NF-κB–dependent role for JunB in the induction of proinflammatory cytokines in LPS-activated bone marrow–derived dendritic cells. PLoS ONE 2010; 5: e9585.

    Article  Google Scholar 

  32. Harper CV, Finkenstädt B, Woodcock DJ, Friedrichsen S, Semprini S, Ashall L et al. Dynamic analysis of stochastic transcription cycles. PLoS Biol 2011; 9: 4.

    Article  Google Scholar 

  33. Malnou CE, Brockly F, Favard C, Moquet-Torcy G, Piechaczyk M, Jariel-Encontre I . Heterodimerization with different Jun proteins controls c-Fos intranuclear dynamics and distribution. J Biol Chem 2010; 285: 6552–6562.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs R Hipskind, I Jariel-Encontre, T Salem and G Moquet-Torcy for fruitful discussions and critical reading of the manuscript. MP’s laboratory is an ‘Equipe Labellisée’ of the French Ligue Nationale contre le Cancer. This work was also supported by the CNRS, the Association pour la Recherche sur le Cancer (ARC), and the Agence Nationale de la Recherche (BLAN08-3_310119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Bossis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tempé, D., Vives, E., Brockly, F. et al. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene 33, 921–927 (2014). https://doi.org/10.1038/onc.2013.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.4

Keywords

This article is cited by

Search

Quick links