Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The asparaginyl hydroxylase factor-inhibiting HIF is essential for tumor growth through suppression of the p53–p21 axis

Abstract

We showed previously that factor-inhibiting hypoxia-inducible factor HIF (FIH) monitors the expression of a spectrum of genes that are dictated by the cell's partial oxygen pressure. This action is mediated by the C-TAD, one of two transactivation domains (TADs) of the hypoxia-inducible factor. Here, we questioned: (1) the function of FIH as a HIF-1 modulator of gene expression in the context of a physiological oxygen gradient occurring in three-dimensional cultures and in tumors and (2) the role of FIH as a modulator of the growth of human tumor cells. We first showed that the expression pattern of HIF target genes that depend on the C-TAD, such as carbonic anhydrase IX, was spacially displaced to more oxygenated areas when FIH was silenced, whereas overexpression of FIH restricted this pattern to more hypoxic areas. Second, we showed that silencing fih severely reduced in vitro cell proliferation and in vivo tumor growth of LS174 colon adenocarcinoma and A375 melanoma cells. Finally, silencing of fih significantly increased both the total and phosphorylated forms of the tumor suppressor p53, leading to an increase in its direct target, the cell cycle inhibitor p21. Moreover, p53-deficient or mutant cells were totally insensitive to FIH expression. Thus, FIH activity is essential for tumor growth through the suppression of the p53–p21 axis, the major barrier that prevents cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BNIP3:

Bcl-2/E1B 19-kDa-interacting protein 3

CAIX:

carbonic anhydrase IX

FIH:

factor-inhibiting HIF-1

HIF-1α:

hypoxia-inducible factor-1α

References

  • Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J . (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22: 4082–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady CA, Attardi LD . (2010). p53 at a glance. J Cell Sci 123: 2527–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM et al. (2009). Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69: 358–368.

    Article  CAS  PubMed  Google Scholar 

  • Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML et al. (2006). Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA 103: 14767–14772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockman ME, Webb JD, Ratcliffe PJ . (2009). FIH-dependent asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Ann NY Acad Sci 1177: 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J . (2008). A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron 1: 53–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayan F, Monticelli M, Pouyssegur J, Pecou E . (2009). Gene regulation in response to graded hypoxia: the non-redundant roles of the oxygen sensors PHD and FIH in the HIF pathway. J Theor Biol 259: 304–316.

    Article  CAS  PubMed  Google Scholar 

  • Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM . (2006). The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res 66: 3688–3698.

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y . (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94: 4273–4278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fels DR, Koumenis C . (2005). HIF-1alpha and p53: the ODD couple? Trends Biochem Sci 30: 426–429.

    Article  CAS  PubMed  Google Scholar 

  • Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W . (1997). HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63: 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M et al. (1997). Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272: 8581–8593.

    Article  CAS  PubMed  Google Scholar 

  • Hu CJ, Sataur A, Wang L, Chen H, Simon MC . (2007). The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18: 4528–4542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Kaluz S, Kaluzova M, Stanbridge EJ . (2008). Comment on the role of FIH in the inhibitory effect of bortezomib on hypoxia-inducible factor-1. Blood 111: 5258–5259.

    Article  CAS  PubMed  Google Scholar 

  • Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J . (2003). Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 279: 9899–9904.

    Article  PubMed  Google Scholar 

  • Kroeze SG, Vermaat JS, van Brussel A, van Melick HH, Voest EE, Jonges TG et al. (2010). Expression of nuclear FIH independently predicts overall survival of clear cell renal cell carcinoma patients. Eur J Cancer 46: 3375–3382.

    Article  CAS  PubMed  Google Scholar 

  • Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK . (2002a). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16: 1466–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML . (2002b). Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295: 858–861.

    Article  CAS  PubMed  Google Scholar 

  • Linke S, Stojkoski C, Kewley RJ, Booker GW, Whitelaw ML, Peet DJ . (2004). Substrate requirements of the oxygen-sensing asparaginyl hydroxylase factor inhibiting HIF. J Biol Chem 279: 14391–14397.

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, Chiou SH, Lin SC, Chang KW . (2010). miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70: 1635–1644.

    Article  CAS  PubMed  Google Scholar 

  • Lisy K, Peet DJ . (2008). Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15: 642–649.

    Article  CAS  PubMed  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL . (2001). FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ et al. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105: 659–669.

    Article  CAS  PubMed  Google Scholar 

  • Morris MR, Maina E, Morgan NV, Gentle D, Astuti D, Moch H et al. (2004). Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J Clin Pathol 57: 706–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newbold RF . (2002). The significance of telomerase activation and cellular immortalization in human cancer. Mutagenesis 17: 539–550.

    Article  CAS  PubMed  Google Scholar 

  • O'Rourke JF, Tian YM, Ratcliffe PJ, Pugh CW . (1999). Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem 274: 2060–2071.

    Article  CAS  PubMed  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM . (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: 437–443.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Seiki M . (2009). Mint3 enhances the activity of hypoxia-inducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1. J Biol Chem 284: 30350–30359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schodel J, Bohr D, Klanke B, Schley G, Schlotzer-Schrehardt U, Warnecke C et al. (2010). Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney Int 78: 857–867.

    Article  PubMed  Google Scholar 

  • Semenza GL . (2010). HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20: 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Chun YS, Lee DS, Huang LE, Park JW . (2008). Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood 111: 3131–3136.

    Article  CAS  PubMed  Google Scholar 

  • Tian H, McKnight SL, Russell DW . (1997). Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72–82.

    Article  CAS  PubMed  Google Scholar 

  • Tian YM, Yeoh KK, Eriksson T, Kessler BM, Kramer HB, Edelmann MJ et al. (2011). Differential sensitivity of hypoxia factor hydroxylation sites to hypoxia and hydroxylase inhibitors. J Biol Chem 286: 13041–13051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. (2003). Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4: 609–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL et al. (1998). Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92: 2260–2268.

    CAS  PubMed  Google Scholar 

  • Wiznerowicz M, Trono D . (2003). Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Jiang J, Lim CA, Wu Q, Ng HH, Chin KC . (2007). BLIMP1 regulates cell growth through repression of p53 transcription. Proc Natl Acad Sci USA 104: 1841–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D et al. (2010). The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab 11: 364–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory is funded by the Ligue Nationale Contre le Cancer (équipe labellisée), the Association pour la Recherche contre le Cancer, the Institut National du Cancer, the Agence Nationale pour la Recherche, METOXIA (EU program FP7), the Centre A Lacassagne, the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale and the University of Nice (http://www.unice.fr/isdbc/). We thank Dr Corinne Bertolotto and Dr Frédéric Bost for their helpful advices. We also thank Dr M Christiane Brahimi-Horn for critical reading and editorial correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N M Mazure.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelletier, J., Dayan, F., Durivault, J. et al. The asparaginyl hydroxylase factor-inhibiting HIF is essential for tumor growth through suppression of the p53–p21 axis. Oncogene 31, 2989–3001 (2012). https://doi.org/10.1038/onc.2011.471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.471

Keywords

This article is cited by

Search

Quick links