Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anthracyclines disrupt telomere maintenance by telomerase through inducing PinX1 ubiquitination and degradation

Abstract

Telomere maintenance is essential for cancer growth. Induction of telomere dysfunction, for example, by inhibition of telomeric proteins or telomerase, has been shown to strongly enhance cancer cells’ sensitivity to chemotherapies. However, it is not clear whether modulations of telomere maintenance constitute cancer cellular responses to chemotherapies. Furthermore, the manner in which anti-cancer drugs affect telomere function remains unknown. In this study, we show that anthracyclines, a class of anti-cancer drugs widely used in clinical cancer treatments, have an active role in triggering telomere dysfunction specifically in telomerase-positive cancer cells. Anthracyclines interrupt telomere maintenance by telomerase through the downregulation of PinX1, a protein factor responsible for targeting telomerase onto telomeres, thereby inhibiting telomerase association with telomeres. We further demonstrate that anthracyclines downregulate PinX1 by inducing this protein degradation through the ubiquitin–proteasome-dependent pathway. Our data not only reveal a novel action for anthracyclines as telomerase functional inhibitors but also provide a clue for the development of novel anti-cancer drugs based on telomerase/telomere targeting, which is actively investigated by many current studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Akiyama Y, Maesawa C, Wada K, Fujisawa K, Itabashi T, Noda Y et al. (2004). Human PinX1, a potent telomerase inhibitor, is not involved in human gastrointestinal tract carcinoma. Oncol Rep 11: 871–874.

    CAS  PubMed  Google Scholar 

  • Autexier C, Greider CW . (1996). Telomerase and cancer: revisiting the telomere hypothesis. Trends Biochem Sci 21: 387–391.

    Article  CAS  Google Scholar 

  • Bianchi A, Shore D . (2008). How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell 31: 153–165.

    Article  CAS  Google Scholar 

  • Blackburn EH . (2000). Telomere states and cell fates. Nature 408: 53–56.

    Article  CAS  Google Scholar 

  • Chang Q, Pang JC, Li J, Hu L, Kong X, Ng HK . (2004). Molecular analysis of PinX1 in medulloblastomas. Int J Cancer 109: 309–314.

    Article  CAS  Google Scholar 

  • Collins K . (2000). Mammalian telomeres and telomerase. Curr Opin Cell Biol 12: 378–383.

    Article  CAS  Google Scholar 

  • Collins K . (2006). The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7: 484–494.

    Article  CAS  Google Scholar 

  • Cong YS, Wright WE, Shay JW . (2002). Human telomerase and its regulation. Microbiol Mol Biol Rev 66: 407–425.

    Article  CAS  Google Scholar 

  • De Lange T . (1998). Telomeres and senescence: ending the debate. Science 279: 334–335.

    Article  CAS  Google Scholar 

  • de Lange T . (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 2100–2110.

    Article  CAS  Google Scholar 

  • Denchi EL, de Lange T . (2007). Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448: 1068–1071.

    Article  CAS  Google Scholar 

  • Gallardo F, Olivier C, Dandjinou AT, Wellinger RJ, Chartrand P . (2008). TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J 27: 748–757.

    Article  CAS  Google Scholar 

  • Goueli BS, Janknecht R . (2004). Upregulation of the catalytic telomerase subunit by the transcription factor ER81 and oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 24: 25–35.

    Article  CAS  Google Scholar 

  • Harley CB . (2008). Telomerase and cancer therapeutics. Nat Rev Cancer 8: 167–179.

    Article  CAS  Google Scholar 

  • Hawkins GA, Chang BL, Zheng SL, Isaacs SD, Wiley KE, Bleecker ER et al. (2004). Mutational analysis of PINX1 in hereditary prostate cancer. Prostate 60: 298–302.

    Article  CAS  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Article  CAS  Google Scholar 

  • Laurent G, Jaffrezou JP . (2001). Signaling pathways activated by daunorubicin. Blood 98: 913–924.

    Article  CAS  Google Scholar 

  • Lin SY, Elledge SJ . (2003). Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113: 881–889.

    Article  CAS  Google Scholar 

  • Liu Y, Snow BE, Hande MP, Yeung D, Erdmann NJ, Wakeham A et al. (2000). The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr Biol 10: 1459–1462.

    Article  CAS  Google Scholar 

  • Mergny JL, Helene C . (1998). G-quadruplex DNA: a target for drug design. Nat Med 4: 1366–1367.

    Article  CAS  Google Scholar 

  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al. (1997). hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90: 785–795.

    Article  CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L . (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185–229.

    Article  CAS  Google Scholar 

  • Nakamura M, Masutomi K, Kyo S, Hashimoto M, Maida Y, Kanaya T et al. (2005). Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells to ionizing radiation and chemotherapy. Hum Gene Ther 16: 859–868.

    Article  CAS  Google Scholar 

  • Nugent CI, Lundblad V . (1998). The telomerase reverse transcriptase: components and regulation. Genes Dev 12: 1073–1085.

    Article  CAS  Google Scholar 

  • Palm W, de Lange T . (2008). How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334.

    Article  CAS  Google Scholar 

  • Shay JW, Wright WE . (2006). Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5: 577–584.

    Article  CAS  Google Scholar 

  • Small GW, Somasundaram S, Moore DT, Shi YY, Orlowski RZ . (2003). Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. J Pharmacol Exp Ther 307: 861–869.

    Article  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T . (2003). DNA damage foci at dysfunctional telomeres. Curr Biol 13: 1549–1556.

    Article  CAS  Google Scholar 

  • Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP . (2006). Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 17: 955–965.

    Article  CAS  Google Scholar 

  • Uziel O, Beery E, Dronichev V, Samocha K, Gryaznov S, Weiss L et al. (2010). Telomere shortening sensitizes cancer cells to selected cytotoxic agents: in vitro and in vivo studies and putative mechanisms. PLoS One 5: e9132.

    Article  Google Scholar 

  • Wang C, Yu J, Yuan K, Lan J, Jin C, Huang H . (2010). Plk1-mediated mitotic phosphorylation of PinX1 regulates its stability. Eur J Cell Biol 89: 748–756.

    Article  CAS  Google Scholar 

  • Wong JMY, Kusdra L, Collins K . (2002). Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4: 731–736.

    Article  CAS  Google Scholar 

  • Xin H, Liu D, Wan M, Safari A, Kim H, Sun W et al. (2007). TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445: 559–562.

    Article  CAS  Google Scholar 

  • Zhang B, Bai YX, Ma HH, Feng F, Jin R, Wang ZL et al. (2009). Silencing PinX1 compromises telomere length maintenance as well as tumorigenicity in telomerase-positive human cancer cells. Cancer Res 69: 75.

    Article  CAS  Google Scholar 

  • Zhou XZ, Lu KP . (2001). The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107: 347–359.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Chinese NSFC (30901769), Guangdong National Science Foundation (9451008901002371) and the China Postdoctoral Science Foundation (20090450900) to B Zhang, and also partially by grants from the National Basic Research Program (973 program) of China (No. 2010CB912802) to H-F Kung and (No. 2010CB529404) to J-J Huang, the Chinese NSFC (30771074) to H Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H-F Kung, D Xie or J-J Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Qian, D., Ma, HH. et al. Anthracyclines disrupt telomere maintenance by telomerase through inducing PinX1 ubiquitination and degradation. Oncogene 31, 1–12 (2012). https://doi.org/10.1038/onc.2011.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.214

Keywords

This article is cited by

Search

Quick links