Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

C-terminal binding protein and poly(ADP)ribose polymerase 1 contribute to repression of the p21waf1/cip1 promoter

Abstract

Transcriptional repression by the C-terminal binding protein (CtBP) is proposed to require nicotinamide adenine dinucleotide dehydrogenase (NAD(H). Previous studies have implicated CtBP in transcriptional repression of the p21waf1/cip1 gene. Similarly, the NAD-dependent poly(adenosine diphosphate)ribose polymerase 1 (PARP1) may affect p21 expression via its NAD-dependent enzymatic activity; we therefore asked if PARP1 and CtBP were functionally linked in regulating p21 transcription. We found that restraint of basal p21 transcription requires both CtBP and PARP1. PARP inhibition attenuated activation of p21 transcription by both p53-independent and p53-dependent processes, in a CtBP-dependent manner. CtBP1+2 or PARP1+2 knockdown partially activated p21 gene expression, suggesting relief of a corepressor function dependent on both proteins. We localized CtBP-responsive repression elements to the proximal promoter region, and found ZBRK1 overexpression could also overcome DNA damage-dependent, but not p53-dependent activation through this region. By chromatin immunoprecipitation we find dismissal of CtBP from the proximal promoter following DNA-damage, and that PARP1 associates with a CtBP corepressor complex in nuclear extracts. We propose a model in which both CtBP and PARP functionally interact in a corepressor complex as components of a molecular switch necessary for p21 repression, and following DNA damage signals activation of p21 transcription by corepressor dismissal and co-activator recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO . (2009). Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucl Acids Res 37: 3723–3738.

    Article  CAS  Google Scholar 

  • Ambrose HE, Papadopoulou V, Beswick RW, Wagner SD . (2007). Poly-(ADP-ribose) polymerase-1 (PARP1) binds in a sequence specific manner at the bcl6 locus and contributes to the regulation of bcl6 transcription. Oncogene 26: 6244–6252.

    Article  CAS  Google Scholar 

  • Amiri KI, Ha HC, Smulson ME, Richmond A . (2006). Differential regulation of CXC ligand 1 transcription in melanoma cell lines by poly(ADP-ribose) polymerase-1. Oncogene 25: 7714–7722.

    Article  CAS  Google Scholar 

  • Balasubramanian P, Zhao LJ, Chinnadurai G . (2003). Nicotinamide adenine dinucleotide stimulates oligomerization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 537: 157–160.

    Article  CAS  Google Scholar 

  • Bergman LM, Blades JP . (2006). C-terminal binding proteins: emerging roles in cell survival and tumorigenesis. Apoptosis 11: 879–888.

    Article  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, LaRegina M, Bayley S, Chinnadurai G . (1993). A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469–478.

    Article  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  CAS  Google Scholar 

  • Chinnadurai G . (2007). Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39: 1593–1607.

    Article  CAS  Google Scholar 

  • El Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons RM, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 805–816.

    Article  Google Scholar 

  • Furusawa TH, Moribe H, Kondoh H, Higashi Y . (1999). Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEF1. Mol Cell Biol 19: 8581–8590.

    Article  CAS  Google Scholar 

  • Furuta S, Wang JM, Wei S, Jeng YM, Jiang X, Gu B et al. (2006). Removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter leads to accelerated mammary tumor growth contributed by prominent vasculature. Cancer Cell 10: 13–24.

    Article  CAS  Google Scholar 

  • Gartel AL, Radhakrishnan SK . (2005). Lost in translation: p21 repression, mechanisms, and consequences. Cancer Res 65: 3980–3985.

    Article  CAS  Google Scholar 

  • Grooteclas M, Frisch SM . (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19: 3823–3828.

    Article  Google Scholar 

  • Grooteclas M, Deveraux Q, Hildebrand J, Zhang Q, Goodman RH, Frisch SM . (2003). C-terminal binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci USA 100: 4568–4573.

    Article  Google Scholar 

  • Haapajärvi T, Kivinen L, Heiskanen A, des Bordes C, Datto MB, Wang XF et al. (1999). UV radiation is a transcriptional inducer of p21(Cip1/Waf1) cyclin-kinase inhibitor in a p53-independent manner. Exp Cell Res 248: 272–279.

    Article  Google Scholar 

  • Hildebrand JD, Soriano P . (2002). Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22: 5296–5307.

    Article  CAS  Google Scholar 

  • Ju BG, Solum D, Song EJ, Lee KJ, Rose DW, Glass CK et al. (2004). Activating the PARP-1 sensor component of the groucho/TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119: 815–829.

    CAS  Google Scholar 

  • Kameoka M, Nukuzuma S, Itaya A, Tanaka Y, Ota K, Ikuta K et al. (2004). RNA interference directed against poly(ADP-ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J Virol 78: 8931–8934.

    Article  CAS  Google Scholar 

  • Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B . (1992). Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827–830.

    Article  CAS  Google Scholar 

  • Kim MY, Mauro S, Gévry N, Lis JT, Kraus WL . (2004). NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119: 803–814.

    Article  CAS  Google Scholar 

  • Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, Sassone-Corsi P . (2006). Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5: 873–877.

    Article  CAS  Google Scholar 

  • Kraus WL . (2008). Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20: 294–302.

    Article  CAS  Google Scholar 

  • Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL . (2008). Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319: 819–821.

    Article  CAS  Google Scholar 

  • Kumar V, Carlson JE, Ohg KA, Edwards TA, Rose DW, Escalante CR et al. (2002). Transcription corepressor CtBP is an NAD+-regulated dehydrogenase. Molec Cell 10: 857–869.

    Article  CAS  Google Scholar 

  • Lee Y-K, Thomas SN, Yang AJ, Ann DK . (2007). Doxorubicin down-regulates Kruppel-associated Box Domain-associated Protein 1 sumoylation that relieves its transcriptional repression on p21waf1/cip1 in breast cancer MCF-7 cells. J Biol Chem 282: 1595–1606.

    Article  CAS  Google Scholar 

  • Li S, Chen PL, Subramanian T, Chinnadurai G, Tomlinson G, Osborne CK et al. (1999). Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 274: 11334–11338.

    Article  CAS  Google Scholar 

  • Li M, Naidu P, Yu Y, Berger NA, Kannan P . (2004). Dual regulation of AP-2α transcriptional activation by poly(ADP)-ribose polymerase-1. Biochem J 382: 323–329.

    Article  CAS  Google Scholar 

  • Mottet D, Pirotte S, Lamour V, Hagedorn M, Javerzat S, Bikfalvi A et al. (2009). HDAC4 represses p21(waf1/cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene 28: 243–256.

    Article  CAS  Google Scholar 

  • Moyed HS, Bertrand KP . (1983). Mutations in multicopy Tn10 tet plasmids that confer resistance to inhibitory effects of inducers of tet gene expression. J Bacteriol 155: 557–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini M, Spano S, Cericola C, Pesce A, Massaro A, Millo E et al. (2003). CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22: 3122–3130.

    Article  CAS  Google Scholar 

  • Nibu Y, Zhang H, Bajor E, Barlo S, Small S, Levine M . (1998). dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. EMBO J 17: 7009–7020.

    Article  CAS  Google Scholar 

  • Ocker M, Schneider-Stock S . (2007). Histone deacetylase inhibitors: signaling towards p21cip1/waf1. Int J Biochem Cell Biol 39: 1367–1374.

    Article  CAS  Google Scholar 

  • Ogino H, Nozaki T, Gunji A, Maeda M, Suzuki H, Ohta T . (2007). Loss or PARP1 affects gene expression profile in a genome wide manner in ES cells and liver cells. BMC Genomics 8: 41.

    Article  Google Scholar 

  • Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P et al. (2005). PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18: 83–96.

    Article  CAS  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res 29: e45.

    Article  CAS  Google Scholar 

  • Quinlan KG, Nardini M, Verger A, Franscesato P, Yaswen P, Corda C et al. (2006). Specific recognition of ZNF217 and other zinc finger proteins at a surface groove of C-terminal binding proteins. Mol Cell Biol 26: 8159–8172.

    Article  CAS  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G . (1995). Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92: 10467–10471.

    Article  CAS  Google Scholar 

  • Schreiber V, Amé JC, Dollé P, Schultz I, Rinaldi B, Fraulob V et al. (2002). Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 271: 23028–23036.

    Article  Google Scholar 

  • Schreiber V, Dantzer F, Ame J-C, de Murcia G . (2006). Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517–528.

    Article  CAS  Google Scholar 

  • Sewalt RG, Gunster MJ, van der Vlag J, Satijn DP, Otte AP . (1999). C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol 19: 777–787.

    Article  CAS  Google Scholar 

  • Shi Y, Sawada JI, Sui G, Affar EB, Whetstine JR, Lan F et al. (2003). Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422: 735–738.

    Article  CAS  Google Scholar 

  • Somasundaram K, Zhang H, Zeng YX, Houvras Y, Peng Y, Zhang H et al. (1997). Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature 389: 187–190.

    Article  CAS  Google Scholar 

  • Sundqvist A, Sollerbrandt K, Svensson C . (1998). The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex. FEBS Lett 429: 183–188.

    Article  CAS  Google Scholar 

  • Takasawa R, Nakamura H, Mori T, Tanuma S . (2005). Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UVB and UVC. Apoptosis 10: 1121–1130.

    Article  CAS  Google Scholar 

  • Tao Z, Gao P, Liu HW . (2009). Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. J Am Chem Soc 131: 14258–14260.

    Article  CAS  Google Scholar 

  • Tan EW, Zheng L, Lee W-H, Boyer TG . (2004). Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression. J Biol Chem 279: 6576–6587.

    Article  CAS  Google Scholar 

  • Verger A, Quinlan KGR, Crofts LA, Spano S, Corda D, Kable EPW et al. (2006). Mechanisms directing the nuclear localization of the CtBP family proteins. Molec Cell Biol 26: 4882–4894.

    Article  CAS  Google Scholar 

  • Wieler S, Gagne JP, Vaziri H, Poirier GG, Benchimol S . (2003). Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 278: 18914–18921.

    Article  CAS  Google Scholar 

  • Wilson AJ, Byun DS, Nasser S, Murray LB, Ayanar K, Arango D et al. (2008). HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 19: 4062–4075.

    Article  CAS  Google Scholar 

  • Zhang Q, Piston DW, Goodman RH . (2002). Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897.

    CAS  PubMed  Google Scholar 

  • Zhang Q, Nottke A, Goodman RH . (2005). Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci USA 102: 2802–2807.

    Article  CAS  Google Scholar 

  • Zheng L, Pan H, Li S, Fleskin-Nikitin A, Chen PL, Boyer TG et al. (2000). Sequence specific transcriptional corepressor function for BRCA1 through novel zinc finger protein, ZBRK1. Molec Cell 6: 757–768.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work as supported by Grants (NIDDK R01DK060133) to JRL and DLM (NCI K08CA109158). We thank J Hildebrand (University of Pittsburgh) for the CtBP MEFs, R Klein (OHSU) for access to and assistance with real time PCR, R Kwok (University of Michigan) for the p53 expression construct and Madeleine Pham and Loren Brown for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Madison.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madison, D., Lundblad, J. C-terminal binding protein and poly(ADP)ribose polymerase 1 contribute to repression of the p21waf1/cip1 promoter. Oncogene 29, 6027–6039 (2010). https://doi.org/10.1038/onc.2010.338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.338

Keywords

This article is cited by

Search

Quick links