Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sumoylation of ING2 regulates the transcription mediated by Sin3A

Abstract

ING2 (inhibitor of growth 2) is a candidate tumor-suppressor gene involved in cell cycle control, apoptosis and senescence. Although the functions of ING2 within the chromatin remodeling complex Sin3A/histone deacetylase (HDAC) and in the p53 pathway have been described, how ING2 itself is regulated remains unknown. In this study we report for the first time that ING2 can be sumoylated by small ubiquitin-like modifier 1 (SUMO1) on lysine 195 both in vitro and in vivo. Strikingly, ING2 sumoylation enhances its association with Sin3a. We provide evidences that ING2 can bind to the promoter of genes to mediate their expression and that sumoylation of ING2 is required for this binding to some of these genes. Among them, we identified the gene TMEM71 (transmembrane protein 71), whose expression is regulated by ING2 sumoylation. ING2 must be sumoylated to bind to the promoter of TMEM71 and to recruit the Sin3A chromatin-modifying complex to this promoter, in order to regulate TMEM71 transcription. Hence, sumoylation of ING2 enhances its binding to the Sin3A/HDAC complex and is required to regulate gene transcriptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD . (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108: 345–356.

    Article  CAS  Google Scholar 

  • Bienz M . (2006). The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31: 35–40.

    Article  CAS  Google Scholar 

  • Borkosky SS, Gunduz M, Nagatsuka H, Beder LB, Gunduz E, Ali MA et al. (2009). Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 135: 703–713.

    Article  Google Scholar 

  • Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA . (2005). mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19: 1581–1595.

    Article  CAS  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W et al. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51–64.

    Article  CAS  Google Scholar 

  • Farhana L, Dawson MI, Dannenberg JH, Xu L, Fontana JA . (2009). SHP and Sin3A expression are essential for adamantyl-substituted retinoid-related molecule-mediated nuclear factor-kappaB activation, c-Fos/c-Jun expression, and cellular apoptosis. Mol Cancer Ther 8: 1625–1635.

    Article  CAS  Google Scholar 

  • Feng X, Bonni S, Riabowol K . (2006). HSP70 induction by ING proteins sensitizes cells to tumor necrosis factor alpha receptor-mediated apoptosis. Mol Cell Biol 26: 9244–9255.

    Article  CAS  Google Scholar 

  • Garkavtsev I, Kazarov A, Gudkov A, Riabowol K . (1996). Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 14: 415–420.

    Article  CAS  Google Scholar 

  • Gill G . (2005). Something about SUMO inhibits transcription. Curr Opin Genet Dev 15: 536–541.

    Article  CAS  Google Scholar 

  • Gong W, Russell M, Suzuki K, Riabowol K . (2006). Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 bbinding regulates p21WAF1 expression. Mol Cell Biol 26: 2947–2954.

    Article  CAS  Google Scholar 

  • Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA et al. (2003). The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114: 99–111.

    Article  CAS  Google Scholar 

  • Hay RT . (2005). SUMO: a history of modification. Mol Cell 18: 1–12.

    Article  CAS  Google Scholar 

  • Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A et al. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA 103: 45–50.

    Article  CAS  Google Scholar 

  • Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK et al. (2001). Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276: 40263–40267.

    Article  CAS  Google Scholar 

  • Larrieu D, Ythier D, Binet R, Brambilla C, Brambilla E, Sengupta S et al. (2009). ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Rep 10: 1168–1174.

    Article  CAS  Google Scholar 

  • Larrieu D, Pedeux R . (2009). SharING out the roles in replicatING DNA. Cell Cycle 8: 3623–3624.

    Article  CAS  Google Scholar 

  • Lu F, Dai DL, Martinka M, Ho V, Li G . (2006). Nuclear ING2 expression is reduced in human cutaneous melanomas. Br J Cancer 95: 80–86.

    Article  CAS  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G . (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135: 1457–1470.

    Article  CAS  Google Scholar 

  • Mellor J . (2006). It takes a PHD to read the histone code. Cell 126: 22–24.

    Article  CAS  Google Scholar 

  • Morimoto I, Sasaki Y, Ishida S, Imai K, Tokino T . (2002). Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer 33: 270–278.

    Article  CAS  Google Scholar 

  • Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R et al. (2001). DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci USA 98: 9671–9676.

    Article  CAS  Google Scholar 

  • Nagashima M, Shiseki M, Pedeux RM, Okamura S, Kitahama-Shiseki M, Miura K et al. (2003). A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene 22: 343–350.

    Article  CAS  Google Scholar 

  • Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H et al. (2005). ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol 25: 6639–6648.

    Article  CAS  Google Scholar 

  • Rodriguez MS, Dargemont C, Hay RT . (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654–12659.

    Article  CAS  Google Scholar 

  • Sarker KP, Kataoka H, Chan A, Netherton SJ, Pot I, Huynh MA et al. (2008). ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. J Biol Chem 283: 13269–13279.

    Article  CAS  Google Scholar 

  • Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH et al. (2003). BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBOJ 22: 1210–1222.

    Article  CAS  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96–99.

    Article  CAS  Google Scholar 

  • Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S et al. (2003). p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 63: 2373–2378.

    CAS  Google Scholar 

  • Skowyra D, Zeremski M, Neznanov N, Li M, Choi Y, Uesugi M et al. (2001). Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J Biol Chem 276: 8734–8739.

    Article  CAS  Google Scholar 

  • Terui Y, Saad N, Jia S, McKeon F, Yuan J . (2004). Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 279: 28257–28265.

    Article  CAS  Google Scholar 

  • Ythier D, Larrieu D, Brambilla C, Brambilla E, Pedeux R . (2008). The new tumor suppressor genes ING: genomic structure and status in cancer. Int J Cancer 123: 1483–1490.

    Article  CAS  Google Scholar 

  • Ythier D, Brambilla E, Binet R, Nissou D, Vesin A, de Fraipont F et al. (2009). Expression of candidate tumor suppressor gene ING2 is lost in non-small cell lung carcinoma. Lung Cancer 69: 180–186.

    Article  Google Scholar 

  • Zhang HK, Pan K, Wang H, Weng DS, Song HF, Zhou J et al. (2008). Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma. Cancer Lett 261: 183–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D Nissou for technical assisstance; Dr O Gozani and C Harris for antibodies, plasmids and scientific discussion, and Dr Marc Piechaczyk and Dr Guillaume Bossis for scientific discussion and advising. RP was supported by ARC, the IASLC, an ‘Agir à dom’ grant and a Marie Curie International Reintegration Grant (MIRG-CT-2006-042148). DY, RB and DL were funded by the INCa, ARC, the FRM (Prix Mariane Josso) and the French Ministry of Education and Research, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Pedeux.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ythier, D., Larrieu, D., Binet, R. et al. Sumoylation of ING2 regulates the transcription mediated by Sin3A. Oncogene 29, 5946–5956 (2010). https://doi.org/10.1038/onc.2010.325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.325

Keywords

This article is cited by

Search

Quick links