Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Cdk inhibitor p57Kip2 controls LIM-kinase 1 activity and regulates actin cytoskeleton dynamics

Abstract

The cyclin-dependent kinase inhibitor p57Kip2 gene has been suggested to be a tumor suppressor gene, being inactivated in various cancer types, linked to tumor progression and poor patient outcome. Here, we report that p57Kip2 interacts with the actin cytoskeleton modifying enzyme, LIM-kinase 1 (LIMK-1) but not LIMK-2. This interaction enhances activity of LIMK-1, independently of its activator Rho-associated kinase. This resulted in an increased phosphorylation and consequent inactivation of the actin depolymerization factor, cofilin. In accordance, selective p57Kip2 expression promotes actin stress fiber formation in cancer cells. Fluorescence recovery after photobleaching analysis of fluorescent-labeled actin further demonstrated that p57Kip2 expression results in reduction of actin protein mobile fraction, which affects its turnover rate in cell. Finally, we present evidence that the p57Kip2 control of LIMK-1 ultimately affects cell mobility negatively. Thus, in addition to its established function in control of proliferation and cell death, these results indicate that p57Kip2 is critical in the regulation of actin cytoskeleton dynamic and by this means migration ability of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805–809.

    Article  CAS  Google Scholar 

  • Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Bjornling E et al. (2008). Towards a confocal subcellular atlas of the human proteome. Mol Cell Proteomics 7: 499–508.

    Article  CAS  Google Scholar 

  • Besson A, Dowdy SF, Roberts JM . (2008). CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14: 159–169.

    Article  CAS  Google Scholar 

  • Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM . (2004). p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18: 862–876.

    Article  CAS  Google Scholar 

  • Blint E, Phillips AC, Kozlov S, Stewart CL, Vousden KH . (2002). Induction of p57(KIP2) expression by p73beta. Proc Natl Acad Sci USA 99: 3529–3534.

    Article  Google Scholar 

  • Bozdogan O, Atasoy P, Batislam E, Basar MM, Basar H . (2008). Significance of p57(Kip2) down-regulation in oncogenesis of bladder carcinoma: an immunohistochemical study. Tumori 94: 556–562.

    Article  Google Scholar 

  • Chim CS, Wong AS, Kwong YL . (2005). Epigenetic inactivation of the CIP/KIP cell-cycle control pathway in acute leukemias. Am J Hematol 80: 282–287.

    Article  CAS  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K . (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133: 1403–1415.

    Article  CAS  Google Scholar 

  • Coqueret O . (2003). New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13: 65–70.

    Article  CAS  Google Scholar 

  • Davila M, Frost AR, Grizzle WE, Chakrabarti R . (2003). LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem 278: 36868–36875.

    Article  CAS  Google Scholar 

  • Denicourt C, Dowdy SF . (2004). Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev 18: 851–855.

    Article  CAS  Google Scholar 

  • Dyer MA, Cepko CL . (2000). p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127: 3593–3605.

    CAS  Google Scholar 

  • Fan GK, Xu F, Yang B, Fujieda S . (2006). p57(kip2) expression is related to carcinogenesis and tumor progression in laryngeal tissues. Acta Otolaryngol 126: 301–305.

    Article  CAS  Google Scholar 

  • Gonzalez S, Perez-Perez MM, Hernando E, Serrano M, Cordon-Cardo C . (2005). p73beta-mediated apoptosis requires p57kip2 induction and IEX-1 inhibition. Cancer Res 65: 2186–2192.

    Article  CAS  Google Scholar 

  • Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P . (2005). Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16: 649–664.

    Article  CAS  Google Scholar 

  • Itoh Y, Masuyama N, Nakayama K, Nakayama KI, Gotoh Y . (2007). The cyclin-dependent kinase inhibitors p57 and p27 regulate neuronal migration in the developing mouse neocortex. J Biol Chem 282: 390–396.

    Article  CAS  Google Scholar 

  • Jia J, Lin M, Zhang L, York JP, Zhang P . (2007). The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression. Mol Cell Biol 27: 7236–7247.

    Article  CAS  Google Scholar 

  • Jin RJ, Lho Y, Wang Y, Ao M, Revelo MP, Hayward SW et al. (2008). Down-regulation of p57Kip2 induces prostate cancer in the mouse. Cancer Res 68: 3601–3608.

    Article  CAS  Google Scholar 

  • Joseph B, Marchetti P, Formstecher P, Kroemer G, Lewensohn R, Zhivotovsky B . (2002). Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene 21: 65–77.

    Article  CAS  Google Scholar 

  • Joseph B, Wallen-Mackenzie A, Benoit G, Murata T, Joodmardi E, Okret S et al. (2003). p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci USA 100: 15619–15624.

    Article  CAS  Google Scholar 

  • Joseph B, Andersson ER, Vlachos P, Södersten E, Liu L, Teixeira A et al. (2009). p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neuronal stem cells. Cell Death Differ (in press).

  • Kobatake T, Yano M, Toyooka S, Tsukuda K, Dote H, Kikuchi T et al. (2004). Aberrant methylation of p57KIP2 gene in lung and breast cancers and malignant mesotheliomas. Oncol Rep 12: 1087–1092.

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K . (2006). MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 25: 713–726.

    Article  CAS  Google Scholar 

  • Lee S, Helfman DM . (2004). Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 279: 1885–1891.

    Article  CAS  Google Scholar 

  • Li JQ, Wu F, Usuki H, Kubo A, Masaki T, Fujita J et al. (2003). Loss of p57KIP2 is associated with colorectal carcinogenesis. Int J Oncol 23: 1537–1543.

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Furihata M, Ohtsuki Y, Sasaguri S, Ogoshi S . (2000). Immunohistochemical characterization of p57KIP2 expression in human esophageal squamous cell carcinoma. Anticancer Res 20: 1947–1952.

    CAS  PubMed  Google Scholar 

  • McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF . (2003). Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol 23: 216–228.

    Article  CAS  Google Scholar 

  • Mizuno K, Okano I, Ohashi K, Nunoue K, Kuma K, Miyata T et al. (1994). Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9: 1605–1612.

    CAS  Google Scholar 

  • Nakai S, Masaki T, Shiratori Y, Ohgi T, Morishita A, Kurokohchi K et al. (2002). Expression of p57(KIP2) in hepatocellular carcinoma: relationship between tumor differentiation and patient survival. Int J Oncol 20: 769–775.

    CAS  Google Scholar 

  • Nan KJ, Guo H, Ruan ZP, Jing Z, Lui SX . (2005). Expression of p57(kip2) and its relationship with clinicopathology, PCNA and p53 in primary hepatocellular carcinoma. World J Gastroenterol 11: 1237–1240.

    Article  CAS  Google Scholar 

  • Nunoue K, Ohashi K, Okano I, Mizuno K . (1995). LIMK-1 and LIMK-2, two members of a LIM motif-containing protein kinase family. Oncogene 11: 701–710.

    CAS  PubMed  Google Scholar 

  • Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K . (2000). Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275: 3577–3582.

    Article  CAS  Google Scholar 

  • Pateras IS, Apostolopoulou K, Koutsami M, Evangelou K, Tsantoulis P, Liloglou T et al. (2006). Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer. Int J Cancer 119: 2546–2556.

    Article  CAS  Google Scholar 

  • Ridley AJ, Hall A, Chrzanowska-Wodnicka M, Burridge K . (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. Cell 70: 389–399.

    Article  CAS  Google Scholar 

  • Sakai K, Peraud A, Mainprize T, Nakayama J, Tsugu A, Hongo K et al. (2004). Inducible expression of p57KIP2 inhibits glioma cell motility and invasion. J Neurooncol 68: 217–223.

    Article  CAS  Google Scholar 

  • Samuelsson MK, Pazirandeh A, Okret S . (2002). A pro-apoptotic effect of the CDK inhibitor p57(Kip2) on staurosporine-induced apoptosis in HeLa cells. Biochem Biophys Res Commun 296: 702–709.

    Article  CAS  Google Scholar 

  • Shin JY, Kim HS, Lee KS, Kim J, Park JB, Won MH et al. (2000). Mutation and expression of the p27KIP1 and p57KIP2 genes in human gastric cancer. Exp Mol Med 32: 79–83.

    Article  CAS  Google Scholar 

  • Sidani M, Wessels D, Mouneimne G, Ghosh M, Goswami S, Sarmiento C et al. (2007). Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. J Cell Biol 179: 777–791.

    Article  CAS  Google Scholar 

  • Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tokuda M . (2002). Expression of p57kip2 and its clinical relevance in epithelial ovarian tumors. Anticancer Res 22: 3191–3196.

    CAS  PubMed  Google Scholar 

  • Sumi T, Hashigasako A, Matsumoto K, Nakamura T . (2006). Different activity regulation and subcellular localization of LIMK1 and LIMK2 during cell cycle transition. Exp Cell Res 312: 1021–1030.

    Article  CAS  Google Scholar 

  • Sumi T, Matsumoto K, Nakamura T . (2001). Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 276: 670–676.

    Article  CAS  Google Scholar 

  • Suzuki A, Tsutomi Y, Yamamoto N, Shibutani T, Akahane K . (1999). Mitochondrial regulation of cell death: mitochondria are essential for procaspase 3–p21 complex formation to resist Fas-mediated cell death. Mol Cell Biol 19: 3842–3847.

    Article  CAS  Google Scholar 

  • Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A et al. (2006). The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 173: 395–404.

    Article  CAS  Google Scholar 

  • Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y . (1998). Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci 95: 1392–1397.

    Article  CAS  Google Scholar 

  • Vlachos P, Nyman U, Hajji N, Joseph B . (2007). The cell cycle inhibitor p57(Kip2) promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ 14: 1497–1507.

    Article  CAS  Google Scholar 

  • Yan Y, Frisen J, Lee MH, Massague J, Barbacid M . (1997). Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 11: 973–983.

    Article  CAS  Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K et al. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393: 809–812.

    Article  CAS  Google Scholar 

  • Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H et al. (2003). p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J Biol Chem 278: 52919–52923.

    Article  CAS  Google Scholar 

  • Yoshioka K, Foletta V, Bernard O, Itoh K . (2003). A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA 100: 7247–7252.

    Article  CAS  Google Scholar 

  • Zebda N, Bernard O, Bailly M, Welti S, Lawrence DS, Condeelis JS . (2000). Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J Cell Biol 151: 1119–1128.

    Article  CAS  Google Scholar 

  • Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC et al. (1997). Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 387: 151–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Y Xiong (University of North Carolina, USA), Dr S Leibovitch (Centre National de la Recherche Scientifique, France), Dr K Mizuno (Tohoku University, Japan), Dr H Toyoshima (Tsukuba University, Japan), Dr P Hotulainen (University of Helsinki, Finland) and Dr S Okret (Karolinska Institute) for providing us with different DNA constructs and HeLa cell line, respectively. This work was supported by the Swedish Research Council, the Swedish Cancer Society, the Ã…ke Wiberg Foundation, the Swedish Medical Society and the Karolinska Institutet Foundations (KI Cancer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlachos, P., Joseph, B. The Cdk inhibitor p57Kip2 controls LIM-kinase 1 activity and regulates actin cytoskeleton dynamics. Oncogene 28, 4175–4188 (2009). https://doi.org/10.1038/onc.2009.269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.269

Keywords

This article is cited by

Search

Quick links