Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis

Abstract

The loss of expression of the transcription factor GATA3 in breast tumors has been linked to aggressive tumor development and poor patient survival. In the present work, we address potential roles for GATA3 in breast tumor lung metastasis and progression. Using an aggressive breast cancer cell line, which metastasizes specifically to the lung, we show that GATA3 expression results in reduced tumor outgrowth in the mammary fat pad and lower lung metastatic burden in nude mice. Specifically, GATA3 expression inhibits breast cancer cell expansion inside the lung parenchyma. This phenotype correlates with the ability of GATA3 to negatively regulate the expression of several genes that promote breast cancer lung metastasis (ID1/-3, KRTHB1, LY6E and RARRES3). Conversely, the expression of genes encoding known inhibitors of lung metastasis (DLC1 (deleted in liver cancer 1) and PAEP (progestagen-associated endometrial protein)) is upregulated by GATA3. These data correlate with microarray data from human breast cancer patients, showing a strong correlation between high GATA3 expression and absence of metastases specifically to the lungs. We conclude that GATA3 inhibits primary breast tumor outgrowth and reduces lung metastatic burden by regulating key genes involved in metastatic breast tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ER:

estrogen receptor-α

References

  • Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. (2006). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9: 201–209.

    Article  Google Scholar 

  • Buess M, Nuyten DS, Hastie T, Nielsen T, Pesich R, Brown PO . (2007). Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol 8: R191.

    Article  Google Scholar 

  • de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T et al. (2005). Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85: 154–159.

    Article  CAS  Google Scholar 

  • Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. (2007). Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13: 3207–3214.

    Article  CAS  Google Scholar 

  • Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M . (2007). Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67: 6477–6483.

    Article  CAS  Google Scholar 

  • Goodison S, Yuan J, Sloan D, Kim R, Li C, Popescu NC et al. (2005). The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Res 65: 6042–6053.

    Article  CAS  Google Scholar 

  • Grote D, Souabni A, Busslinger M, Bouchard M . (2006). Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133: 53–61.

    Article  CAS  Google Scholar 

  • Gupta GP, Massague J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    Article  CAS  Google Scholar 

  • Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al. (2007a). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446: 765–770.

    Article  CAS  Google Scholar 

  • Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K et al. (2007b). ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci USA 104: 19506–19511.

    Article  CAS  Google Scholar 

  • Hautala LC, Koistinen R, Seppala M, Butzow R, Stenman UH, Laakkonen P et al. (2008). Glycodelin reduces breast cancer xenograft growth in vivo. Int J Cancer 123: 2279–2284.

    Article  CAS  Google Scholar 

  • Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J et al. (2006). Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66: 10292–10301.

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. (2008). Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.

    Article  Google Scholar 

  • Jeschke U, Mylonas I, Kunert-Keil C, Dazert E, Shabani N, Werling M et al. (2005). Expression of glycodelin protein and mRNA in human ductal breast cancer carcinoma in situ, invasive ductal carcinomas, their lymph node and distant metastases, and ductal carcinomas with recurrence. Oncol Rep 13: 413–419.

    CAS  PubMed  Google Scholar 

  • Johnston SRD, Swanton C . (2006). Handbook of Metastatic Breast Cancer 8th edn Informa Healthcare: London, pp 232.

    Book  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  Google Scholar 

  • Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ et al. (2008a). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13: 141–152.

    Article  CAS  Google Scholar 

  • Kouros-Mehr H, Kim JW, Bechis SK, Werb Z . (2008b). GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 20: 164–170.

    Article  CAS  Google Scholar 

  • Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127: 1041–1055.

    Article  CAS  Google Scholar 

  • Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD . (2000). GATA3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25: 209–212.

    Article  CAS  Google Scholar 

  • Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. (2003). Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100: 5974–5979.

    Article  CAS  Google Scholar 

  • Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D et al. (2005). Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 65: 11259–11264.

    Article  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    Article  CAS  Google Scholar 

  • Murphy KM . (2005). Fate vs choice: the immune system reloaded. Immunol Res 32: 193–200.

    Article  CAS  Google Scholar 

  • Ni H, Dydensborg AB, Herring FE, Basora N, Gagne D, Vachon PH et al. (2005). Upregulation of a functional form of the beta4 integrin subunit in colorectal cancers correlates with c-Myc expression. Oncogene 24: 6820–6829.

    Article  CAS  Google Scholar 

  • Oh DS, Troester MA, Usary J, Hu Z, He X, Fan C et al. (2006). Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24: 1656–1664.

    Article  CAS  Google Scholar 

  • Parikh P, Palazzo JP, Rose LJ, Daskalakis C, Weigel RJ . (2005). GATA-3 expression as a predictor of hormone response in breast cancer. J Am Coll Surg 200: 705–710.

    Article  Google Scholar 

  • Patient RK, McGhee JD . (2002). The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12: 416–422.

    Article  CAS  Google Scholar 

  • Shabani N, Mylonas I, Kunert-Keil C, Briese V, Janni W, Gerber B et al. (2005). Expression of glycodelin in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastases. Anticancer Res 25: 1761–1764.

    CAS  PubMed  Google Scholar 

  • Solomayer EF, Diel IJ, Meyberg GC, Gollan C, Bastert G . (2000). Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res Treat 59: 271–278.

    Article  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  Google Scholar 

  • Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X et al. (2004). Mutation of GATA3 in human breast tumors. Oncogene 23: 7669–7678.

    Article  CAS  Google Scholar 

  • van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  Google Scholar 

  • Voduc D, Cheang M, Nielsen T . (2008). GATA-3 expression in breast cancer has a strong association with estrogen receptor but lacks independent prognostic value. Cancer Epidemiol Biomarkers Prev 17: 365–373.

    Article  CAS  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Perou (Division of Cancer Epidemiology and Genetics, the National Cancer Institute, MD 20852-7234, USA) for sharing cDNA constructs. The work was supported by the Canadian Institutes for Health Research grant MOP-84470 and a Canderel New Initiative Award to MB. ABD was supported by a fellowship from the Carlsberg Foundation (2006_01_0102) and a Canadian Institutes for Health Research Cancer Consortium Training Grant Fellowship Award. AANR is supported by a studentship from the Fonds de la Recherche en Santé du Québec. PS is a research scientist of the National Cancer Institute of Canada. MB holds a Canada Research Chair in Developmental Genetics of the Urogenital System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bouchard.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dydensborg, A., Rose, A., Wilson, B. et al. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene 28, 2634–2642 (2009). https://doi.org/10.1038/onc.2009.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.126

Keywords

This article is cited by

Search

Quick links