Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities

Abstract

DLC1 (deleted in liver cancer 1), which encodes a Rho GTPase-activating protein (Rho-GAP), is a potent tumor suppressor gene that is frequently inactivated in several human cancers. DLC1 is a multidomain protein that has been shown previously to bind members of the tensin gene family. Here we show that p120Ras-GAP (Ras-GAP; also known as RASA1) interacts and extensively colocalizes with DLC1 in focal adhesions. The binding was mapped to the SH3 domain located in the N terminus of Ras-GAP and to the Rho-GAP catalytic domain located in the C terminus of the DLC1. In vitro analyses with purified proteins determined that the isolated Ras-GAP SH3 domain inhibits DLC1 Rho-GAP activity, suggesting that Ras-GAP is a negative regulator of DLC1 Rho-GAP activity. Consistent with this possibility, we found that ectopic overexpression of Ras-GAP in a Ras-GAP-insensitive tumor line impaired the growth-suppressing activity of DLC1 and increased RhoA activity in vivo. Our observations expand the complexity of proteins that regulate DLC1 function and define a novel mechanism of the cross talk between Ras and Rho GTPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abdellatif M, Packer SE, Michael LH, Zhang D, Charng MJ, Schneider MD . (1998). A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy. Mol Cell Biol 18: 6729–6736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baselga J, Rosen N . (2008). Determinants of RASistance to anti-epidermal growth factor receptor agents. J Clin Oncol 26: 1582–1584.

    Article  PubMed  Google Scholar 

  • Bradley WD, Hernandez SE, Settleman JS, Koleske AJ . (2006). Intergrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane. Mol Bio Cell 17: 4827–4836.

    Article  CAS  Google Scholar 

  • Bradshaw JM, Waksman G . (2002). Molecular recognition by SH2 domains. Adv Protein Chem 61: 161–210.

    Article  PubMed  Google Scholar 

  • Brouns MR, Matheson SF, Hu KQ, Delalle I, Caviness VS, Silver J et al. (2000). The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 127: 4891–4903.

    CAS  PubMed  Google Scholar 

  • Bryant SS, Briggs S, Smithgall TE, Martin GA, McCormick F, Chang JH et al. (1995). Two SH2 domains of p120 Ras GTPase-activating protein bind synergistically to tyrosine phosphorylated p190 Rho GTPase-activating protein. J Biol Chem 270: 17947–17952.

    Article  CAS  PubMed  Google Scholar 

  • Clark GJ, Westwick JK, Der CJ . (1997). p120 GAP modulates Ras activation of Jun kinases and transformation. J Biol Chem 272: 1677–1681.

    Article  CAS  PubMed  Google Scholar 

  • Durkin ME, Avner MR, Huh CG, Yuan BZ, Thorgeirsson SS, Popescu NC . (2005). DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Lett 579: 1191–1196.

    Article  CAS  PubMed  Google Scholar 

  • Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS et al. (2007a). DLC-1: a Rho GTPase-activating protein and tumor suppressor. J Cell Mol Med 11: 1185–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durkin ME, Ullmannova V, Guan M, Popescu NC . (2007b). Deleted in liver cancer 3(DLC-3), a novel RhoGTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. Oncogene 26: 4580–4589.

    Article  CAS  PubMed  Google Scholar 

  • Ferraro E, Peluso D, Via A, Ausiello G, Helmer-Citterich M . (2007). SH3-Hunter: discovery of SH3 domain interaction sites in proteins. Nucleic Acids Res 35: W451–W454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A et al. (2006). COSMIC 2005. Br J Cancer 94: 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gigoux V, L’Hoste S, Raynaud F, Camonis J, Garbay C . (2002). Identification of Aurora kinases as RasGAP Src homology 3 domain-binding proteins. J Biol Chem 277: 23742–23746.

    Article  CAS  PubMed  Google Scholar 

  • Guan M, Tripathi V, Zhou X, Popescu NC . (2008). Adenovirus-mediated restoration of the expression of the tumor suppressor gene DLC1 inhibits the proliferation and tumorigenicity of aggressive, androgen-independent human prostate cancer cell lines: prospects for gene therapy. Cancer Gene Ther 15: 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Healy KD, Hodgson L, Kim TY, Shutes AT, Maddileti S, Juliano RL . (2007). DLC1 suppresses non-small lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Mol Carcinog 47: 326–337.

    Article  Google Scholar 

  • Hu KQ, Settleman J . (1997). Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J 16: 473–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Tian X, Shang Y, Huang P . (2008). Inhibition of DLC-1 gene expression by RNA interference in the colon cancer LoVo cell line. Oncol Rep 19: 669–674.

    CAS  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai K, Kiyota M, Seike J, Deki Y, Yagisawa H . (2007). START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology. Biochem Biophys Res Commun 364: 783–789.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy D, French J, Guitard E, Ru K, Tocque B, Mattick J . (2001). Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP(120) binding studies. J Cell Biochem 84: 173–187.

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Lee JW, Kim HP, Jong HS, Kim TY, Jung M et al. (2007). DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochem Biophys Res Commun 355: 72–77.

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Healy KD, Der CJ, Sciaky N, Bang Y, Juliano R. . (2008). Effects of Rho GTPase-activating protein DLC-1 on cell morphology and migration. J Biol Chem 283: 32762–32770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblanc V, Delumeau I, Tocqué B . (1999). Ras-GTPase activating protein inhibition specifically induces apoptosis of tumour cells. Oncogene 18: 4884–4889.

    Article  CAS  PubMed  Google Scholar 

  • Leblanc V, Tocque B, Delumeau I . (1998). RasGAP controls rho-mediated cytoskeletal reorganization through its SH3 domain. Mol Cell Biol 18: 5567–5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung TH, Ching YP, Yam JW, Wong CM, Yau TO, Jin DY et al. (2005). Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proc Natl Acad Sci USA 102: 15207–15212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao YC, Si L, deVere White RW, Lo SH . (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. J Cell Biol 176: 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao YC, Shih YP, Lo SH . (2008). Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Res 68: 7718–7722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SS . (2005). Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390: 641–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer BJ, Eck MJ . (1995). SH3 domains. Minding your p's and q's. Curr Biol 5: 364–367.

    Article  CAS  PubMed  Google Scholar 

  • Musacchio A . (2002). How SH3 domains recognize proline. Adv Protein Chem 61: 211–268.

    Article  PubMed  Google Scholar 

  • Pamonsinlapatham P, Hadj-Slimane R, Raynaud F, Bickle M, Corneloup C, Barthelaix A et al. (2008). A RasGAP SH3 peptide aptamer inhibits RasGAP-Aurora interaction and induces caspase-independent tumor cell death. PLoS ONE 3: e2902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian X, Li G, Asmussen HK, Asnaghi L, Vass WC, Braverman R et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proc Natl Acad Sci USA 104: 9012–9017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross B, Kristensen O, Favre D, Walicki J, Kastrup JS, Widmann C et al. (2007). High resolution crystal structures of the p120 RasGAP SH3 domain. Biochem Biophys Res Commun 353: 463–468.

    Article  CAS  PubMed  Google Scholar 

  • Shang X, Moon SY, Zheng Y . (2007). p200 RhoGAP promotes cell proliferation by mediating cross-talk between Ras and Rho signaling pathways. J Biol Chem 282: 8801–8811.

    Article  CAS  PubMed  Google Scholar 

  • Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK et al. (2007). Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 6: 820–832.

    Article  CAS  PubMed  Google Scholar 

  • Shutes A, Der CJ . (2005). Real-time in vitro measurement of GTP hydrolysis. Methods 37: 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F . (1997). Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 9: 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M et al. (1988). Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242: 1697–1700.

    Article  CAS  PubMed  Google Scholar 

  • Ullmannova V, Popescu NC . (2006). Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors. Int J Oncol 29: 1127–1132.

    CAS  PubMed  Google Scholar 

  • Vogel US, Dixon RA, Schaber MD, Diehl RE, Marshall MS, Scolnick EM et al. (1988). Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335: 90–93.

    Article  CAS  PubMed  Google Scholar 

  • Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 65: 8861–8868.

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Krasnitz A, Lucito R, Sordella R, VanAelst L, Cordon-Cardo C et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev 22: 1439–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yam JW, Ko FC, Chan CY, Jin DY, Ng IO . (2006). Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Res 66: 8367–8372.

    Article  CAS  PubMed  Google Scholar 

  • Yuan BZ, Miller MJ, Keck C, Zimonjic DB, Thorgeirsson SS, Popescu NC . (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res 58: 2196–2199.

    CAS  PubMed  Google Scholar 

  • Yue Y, Lypowy J, Hedhli N, Abdellatif M . (2004). Ras GTPase-activating protein binds to Akt and is required for its activation. J Biol Chem 279: 12883–12889.

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, DeClue JE, Vass WC, Papageorge AG, McCormick F, Lowy DR . (1990). Suppression of c-ras transformation by GTPase-activating protein. Nature 346: 754–756.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zimonjic DB, Park SW, Yang XY, Durkin ME, Popescu NC . (2008). DLC-1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down regulation of gene involved in metastasis. Int J Oncol 32: 1285–1291.

    CAS  PubMed  Google Scholar 

  • Zhou X, Thorgeirsson SS, Popescu NC . (2004). Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene 23: 1308–1313.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Intramural Research Program of the National Cancer Institute, Center for Cancer Research, NIH supported this work. CJD is also supported by an NIH grant (1R01CA129610), and DV was supported by a fellowship from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N C Popescu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XY., Guan, M., Vigil, D. et al. p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene 28, 1401–1409 (2009). https://doi.org/10.1038/onc.2008.498

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.498

Keywords

This article is cited by

Search

Quick links