Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA

Abstract

Loss of cell polarity and tissue architecture is a hallmark of carcinomas that arise from epithelial cells. Recent studies on Drosophila tumor suppressors have provided evidence that epithelial polarity and cell proliferation are functionally coupled, suggesting a function for polarity defects in the development of carcinomas. This notion is supported by the findings that mammalian orthologs of these Drosophila tumor suppressors are targeted by a number of viral oncoproteins. Chronic infection with Helicobacter pylori is causally associated with gastric carcinoma. H. pylori virulence factor CagA (cytotoxin-associated gene A), which is delivered into gastric epithelial cells through a bacterial type IV secretion system, has an important function in cell transformation through interacting with and deregulating SHP-2 phosphatase, a bona fide oncoprotein that is associated with human malignancies. Recent studies have further revealed that CagA specifically binds and inhibits PAR1/MARK polarity-regulating kinase, thereby causing junctional and polarity defects in epithelial cells. Thus, the bacterial oncoprotein simultaneously targets the polarity-regulating system and growth-regulatory system. These findings indicate that loss of cell polarity underlies the abnormal proliferation of epithelial cells that directs carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE, Reece CA et al. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28: 37–53.

    CAS  PubMed  Google Scholar 

  • Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S . (2003). Disruption of the epithelial apical–junctional complex by Helicobacter pylori CagA. Science 300: 1430–1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL et al. (2004). Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 10: 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Asahi M, Azuma T, Ito S, Ito Y, Suto H, Nagai Y et al. (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med 191: 593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ et al. (2004). Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116: 457–466.

    CAS  PubMed  Google Scholar 

  • Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut PR et al. (2000). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2: 155–164.

    CAS  PubMed  Google Scholar 

  • Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR . (2005). Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci USA 102: 16339–16344.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Porath I, Weinberg RA . (2005). The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37: 961–976.

    CAS  PubMed  Google Scholar 

  • Bentires-Alj M, Kontaridis MI, Neel BG . (2006). Stops along the RAS pathway in human genetic disease. Nat Med 12: 283–285.

    CAS  PubMed  Google Scholar 

  • Bentires-Alj M, Paez JG, David FS, Keihack H, Halmos B, Naoki K et al. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64: 8816–8820.

    CAS  PubMed  Google Scholar 

  • Betschlinger J, Knoblich JA . (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14: R674–R685.

    Google Scholar 

  • Bilder D . (2004). Epithelial polarity and proliferation control: links from the Drosophila neoplastic suppressors. Genes Dev 18: 1909–1925.

    CAS  PubMed  Google Scholar 

  • Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH et al. (1995). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55: 2111–2115.

    CAS  PubMed  Google Scholar 

  • Brumby AM, Richardson HE . (2003). scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22: 5769–5779.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavatorta AL, Fumero G, Chouhy D, Aguirre R, Nocito AL, Giri AA et al. (2004). Differential expression of the human homologue of Drosophila discs large oncosuppressor in histologic samples from human papillomavirus-associated lesions as a marker for progression to malignancy. Int J Cancer 111: 373–380.

    CAS  PubMed  Google Scholar 

  • Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M et al. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93: 14648–14653.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Correa P . (1992). Human gastric pathogenesis: a multistep and multifactorial process—First American cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52: 6735–6740.

    CAS  PubMed  Google Scholar 

  • Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G et al. (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA 90: 5791–5795.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E . (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89: 297–308.

    CAS  PubMed  Google Scholar 

  • Eder A, Sui X, Rosen DG, Nolden LK, Cheng KW, Lahad JP et al. (2005). Atypical PKCι contributes to poor prognosis through the loss of apical–basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA 102: 12519–12524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB et al. (2005). Activation of β-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci USA 102: 10646–10651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiol D, Kuhne C, Glaunsinger B, Lee SS, Javier R, Banks L . (1999). Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18: 5487–5496.

    CAS  PubMed  Google Scholar 

  • Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P et al. (1998). E-cadherin germline mutations in familial gastric cancer. Nature 392: 402–405.

    CAS  PubMed  Google Scholar 

  • Hatakeyama M . (2004). Oncogenic mechanisms of Helicobacter pylori CagA protein. Nat Rev Cancer 4: 688–694.

    CAS  PubMed  Google Scholar 

  • Hatakeyama M . (2008). SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol 11: 30–37.

    CAS  PubMed  Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. (1998). A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391: 184–187.

    CAS  PubMed  Google Scholar 

  • Higashi H, Nakaya A, Tsutsumi R, Yokoyama K, Fujii Y, Ishikawa S et al. (2004). Helicobacter pylori CagA provokes Ras-independent morphogenetic response through targeting SHP-2. J Biol Chem 279: 17205–17216.

    CAS  PubMed  Google Scholar 

  • Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T et al. (2002b). Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA 99: 14428–14433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M et al. (2002a). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295: 683–686.

    CAS  PubMed  Google Scholar 

  • Higashi H, Yokoyama K, Fujii Y, Ren S, Yuasa H, Saadat I et al. (2005). EPIYA motif is a membrane targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem 280: 23130–23137.

    CAS  PubMed  Google Scholar 

  • Humbert P, Russell S, Richardson H . (2003). Dlg, Scrib and Lgl in cell polarity, cell proliferation and cancer. Bioessays 25: 542–553.

    CAS  PubMed  Google Scholar 

  • Hurov JB, Watkins JL, Piwnica-Worms H . (2004). Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14: 736–741.

    CAS  PubMed  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS . (1988). Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.

    CAS  PubMed  Google Scholar 

  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M . (1997). Binding of high-risk human palillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94: 11612–11616.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuipers EJ, Perez-Perez GI, Meuwissen SG, Blaser MJ . (1995). Helicobacter pylori and atrophic gastritis. importance of the cagA status. J Natl Cancer Inst 87: 1777–1780.

    CAS  PubMed  Google Scholar 

  • Kuphal S, Wallner S, Schimanski CC, Batalle F, Hofer P, Strand S et al. (2006). Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 25: 103–110.

    CAS  PubMed  Google Scholar 

  • Kurashima Y, Murata-Kamiya N, Kikuchi K, Higashi H, Azuma T, Kondo S et al. (2008). Deregulation of Wnt/β-catenin signaling by Helicobacter pylori CagA requires the CagA-multimerization sequence. Int J Cancer 122: 823–831.

    CAS  PubMed  Google Scholar 

  • Kwok T, Urman S, Rohde M, Hartig M, Wessler S, Misselwitz R et al. (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449: 862–866.

    CAS  PubMed  Google Scholar 

  • Lee SS, Weiss RS, Javier RT . (1997). Binding of human oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94: 6670–6675.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 25: 833–843.

    Google Scholar 

  • Macara IG . (2004). Parsing the polarity code. Nat Rev Mol Biol 5: 220–231.

    CAS  Google Scholar 

  • Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T et al. (2007). Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 13: 470–476.

    CAS  PubMed  Google Scholar 

  • Mohi MG, Neel BG . (2007). The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev 17: 23–30.

    CAS  PubMed  Google Scholar 

  • Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S et al. (2005). Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7: 179–191.

    CAS  PubMed  Google Scholar 

  • Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK . (2001). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8: 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H et al. (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26: 4617–4626.

    CAS  PubMed  Google Scholar 

  • Murray NR, Jamieson L, Yu W, Zhang J, Gokmen-Polar Y, Sier D et al. (2004). Protein kinase Cι is required for Ras transformation and colon carcinogenesis in vivo. J Cell Biol 164: 797–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naito M, Yamazaki T, Tsutsumi R, Higashi H, Onoe K, Yamazaki S et al. (2006). Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 130: 1181–1190.

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Huibregtse JM . (2000). Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin ligase. Mol Cell Biol 20: 8244–8253.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Yano T, Nakagawa K, Takizawa S, Suzuki Y, Yasugi T et al. (2004). Analysis of the expression and localisation of a LAP protein, human scribble, in the normal and neoplastic epithelium of uterine cervix. Br J Cancer 90: 194–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neel BG, Gu H, Pao L . (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28: 284–293.

    CAS  PubMed  Google Scholar 

  • Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, Blaser MJ . (1991). Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325: 1132–1136.

    CAS  PubMed  Google Scholar 

  • Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R . (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 1497–1500.

    CAS  PubMed  Google Scholar 

  • Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A et al. (2008). Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA 105: 1003–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarini RA, Xu T . (2003). A genetic screen in Drosophila for metastatic behavior. Science 302: 1227–1231.

    CAS  PubMed  Google Scholar 

  • Panneerselvam S, Marx A, Mandelkow EM, Mandelkow E . (2006). Structure of the catalytic and ubiquitin-associated domains of the protein kinase MARK/Par-1. Structure 14: 173–183.

    CAS  PubMed  Google Scholar 

  • Parkin DM, Bray FI, Devesa SS . (2001). Cancer burden in the year 2000. The global picture. Eur J Cancer 37: S4–S66.

    PubMed  Google Scholar 

  • Parsonnet J, Friedman GD, Orentreich N, Vogelman H . (1997). Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40: 297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N et al. (1991). Helicobacter pylori and the risk of gastric carcinoma. N Engl J Med 325: 1127–1131.

    CAS  PubMed  Google Scholar 

  • Peek Jr RM, Blaser MJ . (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2: 28–37.

    CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes III MJ, Wu Z et al. (1998). C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ 9: 197–208.

    CAS  PubMed  Google Scholar 

  • Poppe M, Feller SM, Romer G, Wessler S . (2007). Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26: 3462–3472.

    CAS  PubMed  Google Scholar 

  • Prieur A, Peeper DS . (2008). Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20: 150–155.

    CAS  PubMed  Google Scholar 

  • Regala RP, Weems C, Jamieson L, Copeland JA, Thompson EA, Fields AP . (2005). Atypical protein kinase Cι is an oncogene in human non-small cell lung cancer. Cancer Res 65: 8905–8911.

    CAS  PubMed  Google Scholar 

  • Ren S, Higashi H, Lu H, Azuma T, Hatakeyama M . (2006). Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. J Biol Chem 281: 32344–32352.

    CAS  PubMed  Google Scholar 

  • Rieder G, Merchant JL, Haas R . (2005). Helicobacter pylori cag-Type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 128: 1229–1242.

    CAS  PubMed  Google Scholar 

  • Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y et al. (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447: 330–333.

    CAS  PubMed  Google Scholar 

  • Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schafer SC et al. (2005). Reduced expression of Hugl-1, the human homologue of Drosophila tumor suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 24: 3100–3109.

    CAS  PubMed  Google Scholar 

  • Segal ED, Cha J, Lo J, Falkow S, Tompkins LS . (1999). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 96: 14559–14564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segditsas S, Tomlinson I . (2006). Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25: 7531–7537.

    CAS  PubMed  Google Scholar 

  • Selbach M, Moese S, Hauck CR, Meyer TF, Backert S . (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277: 6775–6778.

    CAS  PubMed  Google Scholar 

  • Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A . (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43: 971–980.

    CAS  PubMed  Google Scholar 

  • Stein M, Rappuoli R, Covacci A . (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci USA 97: 1263–1268.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K et al. (2004). aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14: 1425–1435.

    CAS  PubMed  Google Scholar 

  • Suzuki A, Ohno S . (2006). The PAR-aPKC system: lessons in polarity. J Cell Sci 119: 979–987.

    CAS  PubMed  Google Scholar 

  • Suzuki T, Ohsugi Y, Uchida-Toita M, Akiyama T, Yoshida M . (1999). Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large tumor suppressor protein hDLG, and perturbs its function in cell growth control. Oncogene 18: 5967–6972.

    CAS  PubMed  Google Scholar 

  • Tammer I, Brandt S, Hartig R, Konig W, Backert S . (2007). Activation of Abl by Helicobacter pylori: A novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132: 1309–1319.

    CAS  PubMed  Google Scholar 

  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 111: 421–427.

    Google Scholar 

  • Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34: 148–150.

    CAS  PubMed  Google Scholar 

  • Tepass U, Tanentzapf G, Ward R, Fehon R . (2001). Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35: 747–781.

    CAS  PubMed  Google Scholar 

  • Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M . (2006). FAK is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol 26: 261–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tummuru MK, Cover TL, Blaser MJ . (1993). Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to Cytotoxin production. Infect Immun 61: 1799–1809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M et al. (2001). Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345: 784–789.

    CAS  PubMed  Google Scholar 

  • Zeaiter Z, Cohen D, Musch A, Bagnoli F, Covacci A, Stein M . (2008). Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity. Cell Microbiol 10: 781–794.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hatakeyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatakeyama, M. Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene 27, 7047–7054 (2008). https://doi.org/10.1038/onc.2008.353

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.353

Keywords

This article is cited by

Search

Quick links