Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo

Abstract

The MAPK MEK/ERK pathway is often upregulated in cancer cells and represents an attractive target for development of anticancer drugs. Only few data concerning the specific functions of ERK1 and 2 are reported in the literature. In this report, we investigated the specific role of ERK1 and 2 in liver tumor growth both in vitro and in vivo. DNA synthesis and cells in S phase analysed by flow cytometry, correlated with strong inhibition of Cdk1 and cyclin E levels, are strongly reduced after exposure to the MEK inhibitor, U0126. We obtained a significant reduction of colony formation in soft agar assays and a reduction in the size of tumor xenografts in nude mice treated with U0126. Then, we could specifically abolished ERK1 or 2 expression by small-interfering RNA (siRNA) and demonstrated that ERK2 knockdown but not ERK1 interferes with the process of replication. Moreover, we found that colony formation and tumor growth in vivo were significantly inhibited by targeting ERK2 using stable chemically modified siRNA. Taken together, our results emphasize the importance of the MEK/ERK pathway in liver cancer cell growth in vitro and in vivo and argue for a crucial role of ERK2 in this regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

cdk:

cyclin-dependent kinase

ERK:

extracellular signal-regulated kinase

HCC:

hepatocellular carcinoma

LNA:

locked nucleic acid

MEK:

mitogen-activated protein kinase

siRNA:

small-interfering RNA

References

  • Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R et al. (2004). Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64: 5378–5384.

    Article  CAS  Google Scholar 

  • Albrecht JH, Hoffman JS, Kren BT, Steer CJ . (1993). Cyclin and cyclin-dependent kinase 1 mRNA expression in models of regenerating liver and human liver diseases. Am J Physiol 265: G857–G864.

    CAS  Google Scholar 

  • Albrecht JH, Hu MY, Cerra FB . (1995). Distinct patterns of cyclin D1 regulation in models of liver regeneration and human liver. Biochem Biophys Res Commun 209: 648–655.

    Article  CAS  Google Scholar 

  • Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR . (1995). PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270: 27489–27494.

    Article  CAS  Google Scholar 

  • Andrieux LO, Fautrel A, Bessard A, Guillouzo A, Baffet G, Langouet S . (2007). GATA-1 is essential in EGF-mediated induction of nucleotide excision repair activity and ERCC1 expression through ERK2 in human hepatoma cells. Cancer Res 67: 2114–2123.

    Article  CAS  Google Scholar 

  • Arslan MA, Kutuk O, Basaga H . (2006). Protein kinases as drug targets in cancer. Curr Cancer Drug Targets 6: 623–634.

    Article  CAS  Google Scholar 

  • Behlke MA . (2006). Progress towards in vivo use of siRNAs. Mol Ther 13: 644–670.

    Article  CAS  Google Scholar 

  • Bessard A, Fremin C, Ezan F, Coutant A, Baffet G . (2007). MEK/ERK-dependent uPAR expression is required for motility via phosphorylation of P70S6K in human hepatocarcinoma cells. J Cell Physiol 212: 526–536.

    Article  CAS  Google Scholar 

  • Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA et al. (2003). RNA interference in mammalian cells by chemically modified RNA. Biochemistry 42: 7967–7975.

    Article  CAS  Google Scholar 

  • Brondello JM, McKenzie FR, Sun H, Tonks NK, Pouyssegur J . (1995). Constitutive MAP kinase phosphatase (MKP-1) expression blocks G1 specific gene transcription and S-phase entry in fibroblasts. Oncogene 10: 1895–1904.

    CAS  Google Scholar 

  • Dahlgren C, Wahlestedt C, Thonberg H . (2006). No induction of anti-viral responses in human cell lines HeLa and MCF-7 when transfecting with siRNA or siLNA. Biochem Biophys Res Commun 341: 1211–1217.

    Article  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P . (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.

    Article  CAS  Google Scholar 

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . (1995). A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92: 7686–7689.

    Article  CAS  Google Scholar 

  • Duesbery NS, Resau J, Webb CP, Koochekpour S, Koo HM, Leppla SH et al. (2001). Suppression of ras-mediated transformation and inhibition of tumor growth and angiogenesis by anthrax lethal factor, a proteolytic inhibitor of multiple MEK pathways. Proc Natl Acad Sci USA 98: 4089–4094.

    Article  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Weber K, Tuschl T . (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26: 199–213.

    Article  CAS  Google Scholar 

  • Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y et al. (2005). Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33: 439–447.

    Article  CAS  Google Scholar 

  • Fischer AM, Katayama CD, Pages G, Pouyssegur J, Hedrick SM . (2005). The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23: 431–443.

    Article  CAS  Google Scholar 

  • Fremin C, Ezan F, Boisselier P, Bessard A, Pages G, Pouyssegur J et al. (2007). ERK2 but not ERK1 plays a key role in hepatocyte replication: an RNAi-mediated ERK2 knockdown approach in wild-type and ERK1 null hepatocytes. Hepatology 45: 1035–1045.

    Article  CAS  Google Scholar 

  • Gysin S, Lee SH, Dean NM, McMahon M . (2005). Pharmacologic inhibition of RAF–MEK–ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res 65: 4870–4880.

    Article  CAS  Google Scholar 

  • Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina CA, Nathanson KL et al. (2008). The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14: 230–239.

    Article  CAS  Google Scholar 

  • Hilger RA, Scheulen ME, Strumberg D . (2002). The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie 25: 511–518.

    CAS  Google Scholar 

  • Huynh H, Nguyen TT, Chow KH, Tan PH, Soo KC, Tran E . (2003). Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol 3: 19.

    Article  Google Scholar 

  • Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A et al. (1998). Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27: 951–958.

    Article  CAS  Google Scholar 

  • Klein PJ, Schmidt CM, Wiesenauer CA, Choi JN, Gage EA, Yip-Schneider MT et al. (2006). The effects of a novel MEK inhibitor PD184161 on MEK-ERK signaling and growth in human liver cancer. Neoplasia 8: 1–8.

    Article  CAS  Google Scholar 

  • Lefloch R, Pouyssegur J, Lenormand P . (2008). Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol 28: 511–527.

    Article  CAS  Google Scholar 

  • Leung RK, Whittaker PA . (2005). RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107: 222–239.

    Article  CAS  Google Scholar 

  • Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D et al. (2006). Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66: 11851–11858.

    Article  CAS  Google Scholar 

  • Liu X, Yan S, Zhou T, Terada Y, Erikson RL . (2004). The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene 23: 763–776.

    Article  CAS  Google Scholar 

  • Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, Reid J, Mitchell DY et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 23: 5281–5293.

    Article  CAS  Google Scholar 

  • Loyer P, Cariou S, Glaise D, Bilodeau M, Baffet G, Guguen-Guillouzo C . (1996). Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. J Biol Chem 271: 11484–11492.

    Article  CAS  Google Scholar 

  • Mook OR, Baas F, de Wissel MB, Fluiter K . (2007). Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6: 833–843.

    Article  CAS  Google Scholar 

  • Morel-Chany E, Guillouzo C, Trincal G, Szajnert MF . (1978). Spontaneous neoplastic transformation in vitro of epithelial cell strains of rat liver: cytology, growth and enzymatic activities. Eur J Cancer 14: 1341–1352.

    Article  CAS  Google Scholar 

  • Normanno N, De Luca A, Maiello MR, Campiglio M, Napolitano M, Mancino M et al. (2006). The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol 207: 420–427.

    Article  CAS  Google Scholar 

  • Pages G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F et al. (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286: 1374–1377.

    Article  CAS  Google Scholar 

  • Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J . (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 90: 8319–8323.

    Article  CAS  Google Scholar 

  • Rescan C, Coutant A, Talarmin H, Theret N, Glaise D, Guguen-Guillouzo C et al. (2001). Mechanism in the sequential control of cell morphology and S phase entry by epidermal growth factor involves distinct MEK/ERK activations. Mol Biol Cell 12: 725–738.

    Article  CAS  Google Scholar 

  • Reuber MD . (1961). A transplantable bile-secreting hepatocellular carcinoma in the rat. J Natl Cancer Inst 26: 891–899.

    CAS  Google Scholar 

  • Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N et al. (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 4: 964–968.

    Article  CAS  Google Scholar 

  • Sanjo H, Hikida M, Aiba Y, Mori Y, Hatano N, Ogata M et al. (2007). Extracellular signal-regulated protein kinase 2 is required for efficient generation of B cells bearing antigen-specific immunoglobulin G. Mol Cell Biol 27: 1236–1246.

    Article  CAS  Google Scholar 

  • Schmidt CM, McKillop IH, Cahill PA, Sitzmann JV . (1997). Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun 236: 54–58.

    Article  CAS  Google Scholar 

  • Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC et al. (1999). Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo [see comments]. Nat Med 5: 810–816.

    Article  CAS  Google Scholar 

  • Sebolt-Leopold JS, English JM . (2006). Mechanisms of drug inhibition of signalling molecules. Nature 441: 457–462.

    Article  CAS  Google Scholar 

  • Sebolt-Leopold JS, Herrera R . (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4: 937–947.

    Article  CAS  Google Scholar 

  • Stennicke HR, Salvesen GS . (1997). Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272: 25719–25723.

    Article  CAS  Google Scholar 

  • Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T . (2004). A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64: 3365–3370.

    Article  CAS  Google Scholar 

  • Talarmin H, Rescan C, Cariou S, Glaise D, Zanninelli G, Bilodeau M et al. (1999). The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes. Mol Cell Biol 19: 6003–6011.

    Article  CAS  Google Scholar 

  • Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R . (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol 5: 14.

    Article  Google Scholar 

  • Wabnitz PA, Mitchell D, Wabnitz DA . (2004). In vitro and in vivo metabolism of the anti-cancer agent CI-1040, a MEK inhibitor, in rat, monkey, and human. Pharm Res 21: 1670–1679.

    Article  CAS  Google Scholar 

  • Wang D, Boerner SA, Winkler JD, Lorusso PM . (2007). Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta 1773: 1248–1255.

    Article  CAS  Google Scholar 

  • Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ et al. (2007). Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13: 1576–1583.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr P Loyer for flow cytometry advices, Sigma-Aldrich and Dr Heike Lehrmann for giving us the LNA ERK2 oligonucleotides, and C Ribault for technical assistance. This research was supported by the Institut National de la Santé et de la Recherche Médicale and the Association pour la Recherche sur le Cancer (ARC). A Bessard and C Frémin are a recipient of fellowship from the Région Bretagne/INSERM and the Ministère de l′Education Nationale et de la Technologie, respectively, and the ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Baffet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessard, A., Frémin, C., Ezan, F. et al. RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene 27, 5315–5325 (2008). https://doi.org/10.1038/onc.2008.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.163

Keywords

This article is cited by

Search

Quick links