Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNF4 silencing induces cell growth arrest and DNA damage by promoting nuclear targeting of p62 in hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) is one of the largest causes of cancer-related deaths worldwide owing to the limitation of effective treatment options. The ubiquitin-proteasome system has been rapidly recognized as a frequent target of deregulation leading to cancers. Enhanced DNA damage response (DDR) promotes HCC growth and prevents chemosensitivity, and ubiquitin E3 ligases are key modulators in DDR. Therefore, a better understanding of how E3 ligases regulate cell growth and DNA damage may provide novel insights in understanding the oncogenic mechanism and improving the efficacy of DNA damage therapeutic agents. Here, we performed a high-content RNAi screening targeting 52 DDR-related E3 ligases in HCC and found that ring finger protein 4 (RNF4) was essential for HCC growth. RNF4 was highly expressed in HCC tissues, and the expression levels of RNF4 were associated with poor outcomes. RNF4 silencing significantly suppressed the cell growth, and subsequently induced G2/M arrest and apoptosis of HCC cells in vitro; RNF4 silencing also demonstrated the tumor-suppressive efficacy on HCC in vivo. Moreover, RNF4 silencing increased DNA damage, and rendered HCC cells more sensitive to DNA damage drugs and radiation. We found RNF4 functionally interacts with p62, and mechanistic analyses indicated that RNF4 silencing triggered the nuclear enrichment of p62. Moreover, the p62 nuclear targeting was required for increased DNA damage and growth suppression mediated by RNF4 silencing. Thus, our findings suggest RNF4 is essential for HCC proliferation via preventing nuclear translocation of p62. RNF4 silencing promotes DNA damage and may serve as a novel strategy to suppress cell growth and increase the sensitivity of DNA damage therapeutic agents in HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oncogenic role of RNF4 in HCC.
Fig. 2: RNF4 silencing induces G2/M cell cycle arrest and apoptosis.
Fig. 3: RNF4 silencing causes endogenous DNA damage and sensitizes the effect of DNA damage reagents.
Fig. 4: RNF4 interacts with p62.
Fig. 5: RNF4 silencing-induced cell growth arrest and DNA damage are dependent on p62 expression.
Fig. 6: RNF4 silencing induces the nuclear localization of p62 and nuclear p62 involves in RNF4 silencing-induced cell death and DNA damage.
Fig. 7: RNF4 silencing sensitizes the effect of DNA damage reagents in a p62-dependent manner in vivo.

Similar content being viewed by others

References

  1. Balogh J, Victor D 3rd, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41–53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–45.

    Article  CAS  PubMed  Google Scholar 

  3. Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.

    Article  CAS  PubMed  Google Scholar 

  4. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007;131:901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell. 2016;63:34–48.

    Article  CAS  PubMed  Google Scholar 

  6. Sriramachandran AM, Dohmen RJ. SUMO-targeted ubiquitin ligases. Biochim Biophys Acta Mol Cell Res. 2014;1843:75–85.

    Article  CAS  Google Scholar 

  7. Vyas R, Kumar R, Clermont F, Helfricht A, Kalev P, Sotiropoulou P, et al. RNF4 is required for DNA double-strand break repair in vivo. Cell Death Differ. 2013;20:490–502.

    Article  CAS  PubMed  Google Scholar 

  8. Galanty Y, Belotserkovskaya R, Coates J, Jackson SP. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 2012;26:1179–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sánchez-Martín P., Komatsu M. p62/SQSTM1—steering the cell through health and disease. J Cell Sci. 2018;131:jcs222836.

    Article  PubMed  Google Scholar 

  10. Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem. 2010;285:5941–53.

    Article  CAS  PubMed  Google Scholar 

  11. Gartner A, Muller S. PML, SUMO, and RNF4: guardians of nuclear protein quality. Mol Cell. 2014;55:1–3.

    Article  PubMed  Google Scholar 

  12. Brinkmann K, Schell M, Hoppe T, Kashkar H. Regulation of the DNA damage response by ubiquitin conjugation. Front Genet. 2015;6:98.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 2008;10:538–46.

    Article  CAS  PubMed  Google Scholar 

  14. Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, et al. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy. 2010;6:330–44.

    Article  CAS  PubMed  Google Scholar 

  15. Goto Y, Koyasu S, Kobayashi M, Harada H. The emerging roles of the ubiquitination/deubiquitination system in tumor radioresistance regarding DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties: insight into the development of novel radiosensitizing strategies. Mutat Res. 2017;803–805:76–81.

  16. Uckelmann M, Sixma TK. Histone ubiquitination in the DNA damage response. DNA Repair. 2017;56:92–101.

    Article  CAS  PubMed  Google Scholar 

  17. Yang D, Zhao Y, Liu J, Sun Y, Jia L. Protective autophagy induced by RBX1/ROC1 knockdown or CRL inactivation via modulating the DEPTOR-MTOR axis. Autophagy. 2012;8:1856–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169:792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells. 2014;3:1027–88.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Su Y-T, Gao C, Liu Y, Guo S, Wang A, Wang B, et al. Monoubiquitination of filamin B regulates vascular endothelial growth factor-mediated trafficking of histone deacetylase 7. Mol Cell Biol. 2013;33:1546–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang G, Gao Y, Li L, Jin G, Cai Z, Chao J-I, et al. K63-linked ubiquitination in kinase activation and cancer. Front Oncol. 2012;2:5–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-inked polyubiquitin chains. Biochemical J. 2008;411:249–60.

    Article  CAS  Google Scholar 

  23. Sang Y, Yan F, Ren X. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications. Oncotarget. 2015;6:42590–602.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18:69–88.

    Article  CAS  PubMed  Google Scholar 

  25. Hao Z, Huang S. E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci Landmark. 2015;20:474–90.

    Article  CAS  Google Scholar 

  26. Jung Y-S, Qian Y, Chen X. Pirh2 RING-finger E3 ubiquitin ligase: Its role in tumorigenesis and cancer therapy. FEBS Lett. 2012;586:1397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Groocock LM, Nie M, Prudden J, Moiani D, Wang T, Cheltsov A, et al. RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response. Embo Rep. 2014;15:601–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kimberly AF, Xin G, Oliver K, JS O. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax. Blood. 2012;119:1173–81.

    Article  Google Scholar 

  29. Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. Febs J. 2015;282:4672–8.

    Article  CAS  PubMed  Google Scholar 

  30. Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009;137:1001–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng Y, Klionsky DJ. Autophagy regulates DNA repair through SQSTM1/p62. Autophagy. 2017;13:995–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moscat J, Karin M, Diaz-Meco MT. p62 in cancer: signaling adaptor beyond autophagy. Cell. 2016;167:606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, et al. Interaction domains of p62: a bridge between p62 and selective autophagy. DNA Cell Biol. 2013;32:220–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtininduced cell death. J Cell Biol. 2015;171:603–14.

    Article  Google Scholar 

  35. Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett. 2016;590:2375–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartolini D, Dallaglio K, Torquato P, Piroddi M, Galli F. Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma. Transl Res. 2018;193:54–71.

    Article  PubMed  Google Scholar 

  37. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.

    Article  CAS  PubMed  Google Scholar 

  38. Saito T, Ichimura Y, Taguchi K, Suzuki T, Mizushima T, Takagi K, et al. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat Commun. 2016;7:12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Denk H, Stumptner C, Abuja PM, Zatloukal K. Sequestosome 1/p62-related pathways as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets. 2019;23:393–406.

    Article  PubMed  Google Scholar 

  40. Xiang X, Qin HG, You XM, Wang YY, Qi LN, Ma L, et al. Expression of P62 in hepatocellular carcinoma involving hepatitis B virus infection and aflatoxin B1 exposure. Cancer Med. 2017;6:2357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao XM, Hu WX, Wu ZF, Chen YX, Zeng ZC. Tetrandrine enhances radiosensitization in human hepatocellular carcinoma cell lines. Radiat Res. 2018;190:385–95.

    Article  CAS  PubMed  Google Scholar 

  42. Sun L, Zhang G, Li Z, Lei T, Huang C, Song T, et al. Cellular distribution of tumour suppressor protein p53 and high-risk human papillomavirus (HPV)-18 E6 fusion protein in wild-type p53 cell lines. J Int Med Res. 2008;36:1015–21.

    Article  CAS  PubMed  Google Scholar 

  43. Yi T, Yi Z, Cho SG, Luo J, Pandey MK, Aggarwal BB, et al. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res. 2008;68:1843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su Q, Liu YF, Zhang JF, Zhang SX, Li DF, Yang JJ. Expression of insulin like growth factor II in hepatitis B, cirrhosis and hepatocellular-carcinoma its relationship with hepatitis B virus antigen expression. Hepatology. 1994;20:788–99.

    Article  CAS  PubMed  Google Scholar 

  45. Yang D, Li L, Liu H, Wu L, Luo Z, Li H, et al. Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell Death Differ. 2013;20:235–47.

    Article  CAS  PubMed  Google Scholar 

  46. Fang JH, Zhou HC, Zeng CX, Yang J, Liu YL, Huang XZ, et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology. 2011;54:1729–40.

    Article  CAS  PubMed  Google Scholar 

  47. Yang DQ, Zhang Q, Ma YF, Che ZH, Zhang WL, Wu MM, et al. Augmenting the therapeutic efficacy of adenosine against pancreatic cancer by switching the Akt.p21-dependent senescence to apoptosis. EBioMedicine. 2019;47:114–27.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation Grant of China [81770579, 81830080, 81861168038, 81970506, 81800477]. The authors thank Ying Zhao for p62 WT, p62 â–³UBA, p62 â–³PB1, p62 â–³NES and p62 â–³NLS plasmids. The authors thank Dr. Zhaohui Wu and Dr. Mingfang Lv for revising our manuscript. The authors thank Mengxiao Ge for replenishing our experimental data.

Author information

Authors and Affiliations

Authors

Contributions

BL and YP contributed to acquisition, analysis and interpretation of data, and original draft writing. DH, PC, ML, and ZY contributed to acquisition of data. JZ contributed to analysis and interpretation of data. YC contributed to article revision. DY and JL contributed to study design and article revision.

Corresponding authors

Correspondence to Dongqin Yang or Jie Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, B., Pan, Y., Hou, D. et al. RNF4 silencing induces cell growth arrest and DNA damage by promoting nuclear targeting of p62 in hepatocellular carcinoma. Oncogene 41, 2275–2286 (2022). https://doi.org/10.1038/s41388-022-02247-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02247-4

Search

Quick links