Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TEL-AML1 preleukemic activity requires the DNA binding domain of AML1 and the dimerization and corepressor binding domains of TEL

Abstract

The t(12;21)(p13;q22) translocation generates the TEL-AML1 (TEL, translocation-Ets-leukemia; AML1, acute myeloid leukemia-1) (ETV6-RUNX1) fusion product and is the most common chromosomal abnormality in pediatric leukemia. Our previous studies using a murine fetal liver transplantation model demonstrated that TEL-AML1 promotes the self-renewal of B-cell precursors in vitro and enhances the expansion of hematopoietic stem cells (HSCs) in vivo. This is consistent with the hypothesis that TEL-AML1 induces expansion of a preleukemic clone. Several studies have described domains within TEL-AML1 involved in the transcriptional regulation of specific target genes. However, it is unclear which of these domains is important for the activity of TEL-AML1 in preleukemic hematopoiesis. In order to examine this, we have generated a panel of deletion mutants and expressed them in HSCs. These experiments demonstrate that TEL-AML1 requires multiple domains from both TEL and AML1 to alter hematopoiesis. Furthermore, mutation of a single amino-acid residue within the runt homology domain of AML1, required for DNA binding, was sufficient to abrogate TEL-AML1 activity. These data suggest that TEL-AML1 acts as an aberrant transcription factor to perturb multiple pathways during hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andreasson P, Schwaller J, Anastasiadou E, Aster J, Gilliland DG . (2001). The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo. Cancer Genet Cytogenet 130: 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP . (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol 17: 5581–5587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardin F, Yang Y, Cleaves R, Zahurak M, Cheng L, Civin CI et al. (2002). TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res 62: 3904–3908.

    CAS  PubMed  Google Scholar 

  • Bruhn L, Munnerlyn A, Grosschedl R . (1997). ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev 11: 640–653.

    Article  CAS  PubMed  Google Scholar 

  • Busson-Le Coniat M, Nguyen Khac F, Daniel MT, Bernard OA, Berger R . (2001). Chromosome 21 abnormalities with AML1 amplification in acute lymphoblastic leukemia. Genes Chromosomes Cancer 32: 244–249.

    Article  CAS  PubMed  Google Scholar 

  • Cameron ER, Neil JC . (2004). The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene 23: 4308–4314.

    Article  CAS  PubMed  Google Scholar 

  • Dal Cin P, Atkins L, Ford C, Ariyanayagam S, Armstrong SA, George R et al. (2001). Amplification of AML1 in childhood acute lymphoblastic leukemias. Genes Chromosomes Cancer 30: 407–409.

    Article  CAS  PubMed  Google Scholar 

  • Durst KL, Hiebert SW . (2004). Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23: 4220–4224.

    Article  CAS  PubMed  Google Scholar 

  • Fears S, Gavin M, Zhang DE, Hetherington C, Ben-David Y, Rowley JD et al. (1997). Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proc Natl Acad Sci USA 94: 1949–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR et al. (1999). Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 19: 6566–6574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Schwieger M, Horn S, Niebuhr B, Ford A, Roscher S et al. (2005). Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene 24: 7579–7591.

    Article  CAS  PubMed  Google Scholar 

  • Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P et al. (1995). Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92: 4917–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves MF, Maia AT, Wiemels JL, Ford AM . (2003). Leukemia in twins: lessons in natural history. Blood 102: 2321–2333.

    Article  CAS  PubMed  Google Scholar 

  • Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidez F, Petrie K, Ford AM, Lu H, Bennett CA, MacGregor A et al. (2000). Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood 96: 2557–2561.

    CAS  PubMed  Google Scholar 

  • Gunji H, Waga K, Nakamura F, Maki K, Sasaki K, Nakamura Y et al. (2004). TEL/AML1 shows dominant-negative effects over TEL as well as AML1. Biochem Biophys Res Commun 322: 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A et al. (1996). The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol 16: 1349–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al. (2004). AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10: 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K et al. (1998). TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem Biophys Res Commun 252: 582–589.

    Article  CAS  PubMed  Google Scholar 

  • Javed A, Guo B, Hiebert S, Choi JY, Green J, Zhao SC et al. (2000). Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 113 (Part 12): 2221–2231.

    CAS  PubMed  Google Scholar 

  • Kim DH, Moldwin RL, Vignon C, Bohlander SK, Suto Y, Giordano L et al. (1996). TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines. Blood 88: 785–794.

    CAS  PubMed  Google Scholar 

  • Kitabayashi I, Yokoyama A, Shimizu K, Ohki M . (1998). Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J 17: 2994–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yan J, Matheny CJ, Corpora T, Bravo J, Warren AJ et al. (2003). Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J Biol Chem 278: 33088–33096.

    Article  CAS  PubMed  Google Scholar 

  • Lopez RG, Carron C, Oury C, Gardellin P, Bernard O, Ghysdael J . (1999). TEL is a sequence-specific transcriptional repressor. J Biol Chem 274: 30132–30138.

    Article  CAS  PubMed  Google Scholar 

  • Lorsbach RB, Moore J, Ang SO, Sun W, Lenny N, Downing JR . (2004). Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103: 2522–2529.

    Article  CAS  PubMed  Google Scholar 

  • Lutterbach B, Hiebert SW . (2000). Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 245: 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW . (2000). A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 275: 651–656.

    Article  CAS  PubMed  Google Scholar 

  • McLean TW, Ringold S, Neuberg D, Stegmaier K, Tantravahi R, Ritz J et al. (1996). TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 88: 4252–4258.

    CAS  PubMed  Google Scholar 

  • Meyers S, Lenny N, Hiebert SW . (1995). The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 15: 1974–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhail FM, Serry KA, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM et al. (2002). AML1 gene over-expression in childhood acute lymphoblastic leukemia. Leukemia 16: 658–668.

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al. (2002). Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 99: 8242–8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow M, Horton S, Kioussis D, Brady HJ, Williams O . (2004). TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood 103: 3890–3896.

    Article  CAS  PubMed  Google Scholar 

  • Niini T, Kanerva J, Vettenranta K, Saarinen-Pihkala UM, Knuutila S . (2000). AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica 85: 362–366.

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. (1999). Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  • Otto F, Kanegane H, Mundlos S . (2002). Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat 19: 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Poirel H, Lacronique V, Mauchauffe M, Le Coniat M, Raffoux E, Daniel MT et al. (1998). Analysis of TEL proteins in human leukemias. Oncogene 16: 2895–2903.

    Article  CAS  PubMed  Google Scholar 

  • Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL et al. (2000). High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 96: 2862–2869.

    CAS  PubMed  Google Scholar 

  • Quack I, Vonderstrass B, Stock M, Aylsworth AS, Becker A, Brueton L et al. (1999). Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am J Hum Genet 65: 1268–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raynaud S, Cave H, Baens M, Bastard C, Cacheux V, Grosgeorge J et al. (1996). The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 87: 2891–2899.

    CAS  PubMed  Google Scholar 

  • Rho JK, Kim JH, Yu J, Choe SY . (2002). Correlation between cellular localization of TEL/AML1 fusion protein and repression of AML1-mediated transactivation of CR1 gene. Biochem Biophys Res Commun 297: 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R et al. (1995). The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85: 3662–3670.

    CAS  PubMed  Google Scholar 

  • Scandura JM, Boccuni P, Cammenga J, Nimer SD . (2002). Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 21: 3422–3444.

    Article  CAS  PubMed  Google Scholar 

  • Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML et al. (1995). TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1985–1989.

    CAS  PubMed  Google Scholar 

  • Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Downing JR . (2004). Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors. Blood 104: 3565–3572.

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki S, Seto M, Greaves M, Enver T . (2004). Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA 101: 8443–8448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida H, Downing JR, Miyazaki Y, Frank R, Zhang J, Nimer SD . (1999). Three distinct domains in TEL-AML1 are required for transcriptional repression of the IL-3 promoter. Oncogene 18: 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hiebert SW . (2001). TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. Oncogene 20: 3716–3725.

    Article  CAS  PubMed  Google Scholar 

  • Wang LC, Kuo F, Fujiwara Y, Gilliland DG, Golub TR, Orkin SH . (1997). Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J 16: 4374–4383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LC, Swat W, Fujiwara Y, Davidson L, Visvader J, Kuo F et al. (1998). The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev 12: 2392–2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 93: 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M . (1999). Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 94: 1057–1062.

    CAS  PubMed  Google Scholar 

  • Yoshida T, Kanegane H, Osato M, Yanagida M, Miyawaki T, Ito Y et al. (2002). Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype–phenotype correlations. Am J Hum Genet 71: 724–738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng C, McNeil S, Pockwinse S, Nickerson J, Shopland L, Lawrence JB et al. (1998). Intranuclear targeting of AML/CBFalpha regulatory factors to nuclear matrix-associated transcriptional domains. Proc Natl Acad Sci USA 95: 1585–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng C, van Wijnen AJ, Stein JL, Meyers S, Sun W, Shopland L et al. (1997). Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-alpha transcription factors. Proc Natl Acad Sci USA 94: 6746–6751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Chen Y, Zhou L, Thirunavukkarasu K, Hecht J, Chitayat D et al. (1999). CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum Mol Genet 8: 2311–2316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sarah Horton, Rebecca Randall and Jasper de Boer (Institute of Child Health) for their help and support, Nancy Speck and Matthew Cheney (Dartmouth Medical School) for their advice on AML1 point mutations and Ewan Cameron (University of Glasgow Veterinary School) and Shai Izraeli (Sheba Medical Center) for useful discussions about our work. This work was supported by funding from the Leukaemia Research Fund and Children With Leukaemia, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Williams.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrow, M., Samanta, A., Kioussis, D. et al. TEL-AML1 preleukemic activity requires the DNA binding domain of AML1 and the dimerization and corepressor binding domains of TEL. Oncogene 26, 4404–4414 (2007). https://doi.org/10.1038/sj.onc.1210227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210227

Keywords

This article is cited by

Search

Quick links