Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication

Abstract

Aberrant centrosome numbers are detected in virtually all human cancers where they can contribute to chromosomal instability by promoting mitotic spindle abnormalities. Despite their widespread occurrence, the molecular mechanisms that underlie centrosome amplification are only beginning to emerge. Here, we present evidence for a novel regulatory circuit involved in centrosome overduplication that centers on RNA polymerase II (pol II). We found that human papillomavirus type 16 E7 (HPV-16 E7)- and hydroxyurea (HU)-induced centriole overduplication are abrogated by α-amanitin, a potent and specific RNA pol II inhibitor. In contrast, normal centriole duplication proceeded undisturbed in α-amanitin-treated cells. Centriole overduplication was significantly reduced by siRNA-mediated knock down of CREB-binding protein (CBP), a transcriptional co-activator. We identified cyclin A2 as a key transcriptional target of RNA pol II during HU-induced centriole overduplication. Collectively, our results show that ongoing RNA pol II transcription is required for centriole overduplication whereas it may be dispensable for normal centriole duplication. Given that many chemotherapeutic agents function through inhibition of transcription, our results may help to develop strategies to target centrosome-mediated chromosomal instability for cancer therapy and prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bai VU, Cifuentes E, Menon M, Barrack ER, Reddy GP . (2005). J Cell Physiol 204: 381–387.

  • Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR . (1995). J Cell Biol 130: 105–115.

  • Bornens M . (2002). Curr Opin Cell Biol 14: 25–34.

  • Braude PR . (1979). Dev Biol 68: 440–452.

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Science 282: 1497–1501.

  • Bushnell DA, Cramer P, Kornberg RD . (2002). Proc Natl Acad Sci USA 99: 1218–1222.

  • Caldeira S, de Villiers EM, Tommasino M . (2000). Oncogene 19: 821–826.

  • D'Assoro AB, Busby R, Suino K, Delva E, Almodovar-Mercado GJ, Johnson H et al. (2004). Oncogene 23: 4068–4075.

  • Derheimer FA, Chang CW, Ljungman M . (2005). Eur J Cancer 41: 2569–2576.

  • Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S et al. (2004). EMBO J 23: 3864–3873.

  • Doxsey S . (2002). Mol Cell 10: 439–440.

  • Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S . (2006). Oncogene 25: 2943–2949.

  • Duensing S . (2005). Cell Biol Int 29: 352–359.

  • Duensing S, Duensing A, Crum CP, Munger K . (2001). Cancer Res 61: 2356–2360.

  • Duensing S, Duensing A, Lee DC, Edwards KM, Piboonniyom S, Manuel E et al. (2004). Oncogene 23: 8206–8215.

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S et al. (2000). Proc Natl Acad Sci USA 97: 10002–10007.

  • Duensing S, Munger K . (2001). Biochim Biophys Acta 2: M81–88.

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . (2001). Nature 411: 494–498.

  • Faivre J, Frank-Vaillant M, Poulhe R, Mouly H, Jessus C, Brechot C et al. (2002). Oncogene 21: 1493–1500.

  • Fukasawa K . (2005). Cancer Lett 230: 6–19.

  • Girdham CH, Glover DM . (1991). Genes Dev 5: 1786–1799.

  • Gong XQ, Nedialkov YA, Burton ZF . (2004). J Biol Chem 279: 27422–27427.

  • Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA . (2005). Mol Biol Cell 16: 1095–1107.

  • Hahn S . (2004). Nat Struct Mol Biol 11: 394–403.

  • Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G . (1999). Science 283: 851–854.

  • Hinchcliffe EH, Sluder G . (2001). Genes Dev 15: 1167–1181.

  • Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS . (2004). Chromosoma 112: 389–397.

  • Janknecht R, Hunter T . (1996). Nature 383: 22–23.

  • Jiang Y, Liu M, Spencer CA, Price DH . (2004). Mol Cell 14: 375–385.

  • Kuriyama R, Borisy GG . (1981). J Cell Biol 91: 814–821.

  • Malumbres M, Barbacid M . (2001). Nat Rev Cancer 1: 222–231.

  • Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G et al. (1999). Blood 93: 1390–1398.

  • Martin LG, Demers GW, Galloway DA . (1998). J Virol 72: 975–985.

  • Matsumoto Y, Hayashi K, Nishida E . (1999). Curr Biol 9: 429–432.

  • McDermott KM, Zhang J, Holst CR, Kozakiewicz BK, Singla V, Tlsty TD . (2006). PLoS Biol 4: e51.

  • Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA . (1999). Nat Cell Biol 1: 88–93.

  • Mihaylov IS, Kondo T, Jones L, Ryzhikov S, Tanaka J, Zheng J et al. (2002). Mol Cell Biol 22: 1868–1880.

  • Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M et al. (2001). Oncogene 20: 7888–7898.

  • Munger K, Howley PM . (2002). Virus Res 89: 213–228.

  • Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA et al. (2000). Oncogene 19: 1635–1646.

  • Nigg EA . (2002). Nat Rev Cancer 2: 1–11.

  • Parvin JD, Young RA . (1998). Curr Opin Genet Dev 8: 565–570.

  • Phillips SG, Rattner JB . (1976). J Cell Biol 70: 9–19.

  • Salisbury JL, Whitehead CM, Lingle WL, Barrett SL . (1999). Biol Cell 91: 451–460.

  • Sluder G, Miller FJ, Rieder CL . (1986). J Cell Biol 103: 1873–1881.

  • Tommasino M, Adamczewski JP, Carlotti F, Barth CF, Manetti R, Contorni M et al. (1993). Oncogene 8: 195–202.

  • Urbani L, Stearns T . (1999). Curr Biol 9: R315–317.

  • Uzawa M, Grams J, Madden B, Toft D, Salisbury JL . (1995). Dev Biol 171: 51–59.

  • Wong C, Stearns T . (2003). Nat Cell Biol 5: 539–544.

  • Yam CH, Fung TK, Poon RY . (2002). Cell Mol Life Sci 59: 1317–1326.

Download references

Acknowledgements

We are grateful to Michel Bornens, Karl Münger and Jeffrey L Salisbury for sharing important reagents and William Saunders for helpful suggestions. This work was supported by Public Health Service Grant NIH/NCI R01 CA112598 (to SD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Duensing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duensing, A., Liu, Y., Spardy, N. et al. RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication. Oncogene 26, 215–223 (2007). https://doi.org/10.1038/sj.onc.1209782

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209782

Keywords

This article is cited by

Search

Quick links