Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

β-arrestin 2 modulates the activity of nuclear receptor RAR β2 through activation of ERK2 kinase

Abstract

The activity of retinoid receptors activity can be regulated by various extracellular stimuli. In an effort to understand the molecular basis for this phenomenon, the role of β-arrestins was investigated. β-Arrestins constitute a class of proteins involved in the internalization of agonist-activated receptors. They have also been linked to MAPK activation suggesting a direct involvement in signaling cascades. Here, we report that β-arrestin 2 stimulates the transcriptional activation of the retinoid RAR and RXR receptors. Of all the retinoid receptors, the RAR β2 subtype showed the strongest sensitivity to β-arrestin 2 action. Interestingly, this event requires the presence of the MAP kinase ERK2, but not that of JNK or P38. Site-directed mutagenesis showed that Ser 22 and Leu 217 are critical residues of the RAR β2 receptor through which β-arrestin 2 effects are mediated. More importantly, we demonstrate that the induction of PC12 growth inhibition by Nerve Growth Factor is indeed dependent upon RAR β2 transcriptional activation in a β-arrestin 2- and ERK2-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adam-Stitah S, Penna L, Chambon P, Rochette-Egly C . (1999). J Biol Chem 274: 18932–18941.

  • Ahuja HS, Szanto A, Nagy L, Davies PJ . (2003). J Biol Regul Homeost Agents 17: 29–45.

  • Andreatta-Van Leyen S, Hembree JR, Eckert RL . (1994). J Cell Physiol 160: 265–274.

  • Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D et al. (2001). Recent Prog Horm Res 56: 127–155.

  • Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L et al. (2000). Nat Immunol 1: 227–233.

  • Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W et al. (2001). Proc Natl Acad Sci USA 98: 13681–13686.

  • Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H, Moras D . (2000). Mol Cell 5: 289–298.

  • Brauner-Osborne H, Brann MR . (1996). Eur J Pharmacol 295: 93–102.

  • Burstein ES, Hesterberg DJ, Gutkind JS, Brann MR, Currier EA, Messier TL . (1998). Oncogene 17: 1617–1623.

  • Corcoran J, Maden M . (1999). Nat Neurosci 2: 307–308.

  • Cosgaya JM, Aranda A . (2001). J Neurochem 76: 661–671.

  • Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF et al. (1995). FEBS Lett 364: 229–233.

  • Dalle S, Ricketts W, Imamura T, Vollenweider P, Olefsky JM . (2001). J Biol Chem 276: 15688–15695.

  • DeFea KA, Vaughn ZD, O'Bryan EM, Nishijima D, Dery O, Bunnett NW . (2000a). Proc Natl Acad Sci USA 97: 11086–11091.

  • DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW . (2000b). J Cell Biol 148: 1267–1281.

  • Delmotte MH, Tahayato A, Formstecher P, Lefebvre P . (1999). J Biol Chem 274: 38225–38231.

  • Demary K, Wong L, Liou JS, Faller DV, Spanjaard RA . (2001). Endocrinology 142: 2600–2605.

  • Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P, Moras D . (2000). EMBO J 19: 2592–2601.

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. (1998). J Biol Chem 273: 18623–18632.

  • Fox T, Coll JT, Xie X, Ford PJ, Germann UA, Porter MD et al. (1998). Protein Sci 7: 2249–2255.

  • Harish S, Ashok MS, Khanam T, Rangarajan PN . (2000). Biochem Biophys Res Commun 279: 853–857.

  • Holland PM, Cooper JA . (1999). Curr Biol 9: R329–31.

  • Ishaq M, Fan M, Natarajan V . (2000). J Immunol 165: 4217–4225.

  • Klaholz BP, Mitschler A, Moras D . (2000). J Mol Biol 302: 155–170.

  • Klaholz BP, Renaud JP, Mitschler A, Zusi C, Chambon P, Gronemeyer H et al. (1998). Nat Struct Biol 5: 199–202.

  • Kolch W . (2000). Biochem J 351 (Part 2): 289–305.

  • Koutsilieris M, Reyes-Moreno C, Sourla A, Dimitriadou V, Choki I . (1997). Anticancer Res 17: 1461–1465.

  • Krupnick JG, Goodman Jr OB, Keen JH, Benovic JL . (1997). J Biol Chem 272: 15011–15016.

  • Kyriakis JM . (2000). Sci STKE 2000: E1.

  • Lee HY, Suh YA, Robinson MJ, Clifford JL, Hong WK, Woodgett JR et al. (2000). J Biol Chem 275: 32193–32199.

  • Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B . (2005). Vitam Horm 70: 199–264.

  • Lin FT, Daaka Y, Lefkowitz RJ . (1998). J Biol Chem 273: 31640–31643.

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL et al. (2001). Proc Natl Acad Sci USA 98: 2449–2454.

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT et al. (2000). Science 290: 1574–1577.

  • Miller LA, Cheng LZ, Wu R . (1993). Cancer Res 53: 2527–2533.

  • Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ . (2001). J Biol Chem 276: 27770–27777.

  • Ostrowski J, Roalsvig T, Hammer L, Marinier A, Starrett Jr JE, Yu KL et al. (1998). J Biol Chem 273: 3490–3495.

  • Piu F, Magnani M, Ader ME . (2002). Oncogene 21: 3579–3591.

  • Rakhit S, Pyne S, Pyne NJ . (2001). Mol Pharmacol 60: 63–70.

  • Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H et al. (1995). Nature 378: 681–689.

  • Rochette-Egly C, Oulad-Abdelghani M, Staub A, Pfister V, Scheuer I, Chambon P et al. (1995). Mol Endocrinol 9: 860–871.

  • Schmidt P, Holsboer F, Spengler D . (2001). Mol Endocrinol 15: 553–564.

  • Sharrocks AD, Yang SH, Galanis A . (2000). Trends Biochem Sci 25: 448–453.

  • Tahayato A, Lefebvre P, Formstecher P, Dautrevaux M . (1993). Mol Endocrinol 7: 1642–1653.

  • Vo HP, Lee MK, Crowe DL . (1998). Int J Oncol 13: 1127–1134.

  • Wang Z, Boudjelal M, Kang S, Voorhees JJ, Fisher GJ . (1999). Nat Med 5: 418–422.

  • Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D et al. (1996). Nat Struct Biol 3: 87–94.

Download references

Acknowledgements

We thank M Ader for cloning the retinoid receptors. The β-arrestin constructs were kindly provided by G Pei. We are also indebted to M Karin and T Deng for the JNK1, ERK2 and p38 constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Piu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piu, F., Gauthier, N. & Wang, F. β-arrestin 2 modulates the activity of nuclear receptor RAR β2 through activation of ERK2 kinase. Oncogene 25, 218–229 (2006). https://doi.org/10.1038/sj.onc.1209024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209024

Keywords

This article is cited by

Search

Quick links