Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Commutators of PAR-1 signaling in cancer cell invasion reveal an essential role of the Rho–Rho kinase axis and tumor microenvironment

Abstract

We recently reported that proteinase-activated receptors type I (PAR-1) are coupled to both negative and positive invasion pathways in colonic and kidney cancer cells cultured on collagen type I gels. Here, we found that treatments with the cell-permeant analog 8-Br-cGMP and the soluble guanylate cyclase activator BAY41-2272, and Rho kinase (ROK) inhibition by Y27632 or a dominant negative form of ROK lead to PAR-1-mediated invasion through differential Rac1 and Cdc42 signaling. Hypoxia or the counteradhesive matricellular protein SPARC/BM-40 (SPARC: secreted protein acidic rich in cysteine) overexpressed during cancer progression also commutated PAR-1 to cellular invasion through the cGMP/protein kinase G (PKG) cascade, RhoA inactivation, and Rac1-dependent or -independent signaling. Cultured primary cancer cells isolated from peritoneal and pleural effusions from patients with colon cancer or other malignant tumors harbored PAR-1, as shown by RT–PCR and FACS analyses. These malignant effusions also contained high levels of activated thrombin and fibrin, and induced a proinvasive response in HCT8/S11 human colorectal cancer cells. Our data underline the essential role of the tumor microenvironment and of several commutators targeting cGMP/PKG signaling and the RhoA–ROK axis in the control of PAR-1 proinvasive activity and metastatic potential of cancer cells in distant organs and peritoneal or pleural cavities. We also add new insights into the mechanisms linking the coagulation mediators thrombin and PAR-1 in the context of blood coagulation disorders and venous thrombosis often observed in cancer patients, as described in 1865 by Armand Trousseau.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

HIF-1α:

hypoxia-inducible factor 1α

PAR-1:

proteinase-activated receptors type I

PKG:

protein kinase G

ROK:

Rho-associated coiled-coil-containing protein kinase

TN-C:

tenascin-C

SPARC:

secreted protein acidic rich in cysteine

References

  • Ahn B and Ohshima H . (2001). Cancer Res., 61, 8357–8360.

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y and Kaibuchi K . (1997). Science, 275, 1308–1311.

  • Andre T, Kotelevets L, Vaillant JC, Coudray AM, Weber L, Prevot S, Parc R, Gespach C and Chastre E . (2000). Int. J. Cancer, 86, 174–181.

  • Begum N, Sandu OA, Ito M, Lohmann SM and Smolenski A . (2002). J. Biol. Chem., 277, 6214–6222.

  • Bellanger JM, Astier C, Sardet C, Ohta Y, Stossel TP and Debant A . (2000). Nat. Cell Biol., 2, 888–892.

  • Bissell MJ and Radisky D . (2001). Nat. Rev. Cancer, 1, 46–54.

  • Boccaccio C, Sabatino G, Medico E, Girolami F, Follenzi A, Reato G, Sottile A, Naldini L and Comoglio PM . (2005). Nature, 434, 396–400.

  • Boire A, Covic L, Agarwal A, Jacques S, Sherifi S and Kuliopulos A . (2005). Cell, 120, 303–313.

  • Booden MA, Siderovski DP and Der CJ . (2002). Mol. Cell. Biol., 22, 4053–4061.

  • Bracke M, Boterberg T, Bruyneel E and Mareel M . (2000). Cancer Invasion and Metastasis, Vol. 58, Humana Press: Totowa, NJ, USA, pp. 81–89.

    Google Scholar 

  • Bradshaw AD and Sage EH . (2001). J. Clin. Invest., 107, 1049–1054.

  • Cerione RA . (2004). Trends Cell Biol., 14, 127–132.

  • Coughlin SR . (2000). Nature, 407, 258–264.

  • Darmoul D, Gratio V, Devaud H, Lehy T and Laburthe M . (2003). Am. J. Pathol., 162, 1503–1513.

  • Darmoul D, Gratio V, Devaud H, Peiretti F and Laburthe M . (2004). Mol. Cancer Res., 2, 514–522.

  • De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C and Mareel M . (2004). FASEB J., 18, 1016–1018.

  • Emami S and Perry MC . (1984). Biochim. Biophys. Acta, 804, 77–88.

  • Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y, Reich R, Vlodavsky I and Bar-Shavit R . (1998). Nat. Med., 4, 909–914.

  • Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, Altevogt P and Bar-Shavit R . (2001). J. Biol. Chem., 276, 10952–10962.

  • Faivre S, Regnauld K, Bruyneel E, Nguyen QD, Mareel M, Emami S and Gespach C . (2001). Mol. Pharmacol., 60, 363–372.

  • Hansen SH, Zegers MM, Woodrow M, Rodriguez-Viciana P, Chardin P, Mostov KE and McMahon M . (2000). Mol. Cell. Biol., 20, 9364–9375.

  • Hou Y, Ye RD and Browning DD . (2004). Cell Signal., 16, 1061–1069.

  • Jou TS and Nelson WJ . (1998). J. Cell Biol., 142, 85–100.

  • Kaibuchi K, Kuroda S and Amano M . (1999). Annu. Rev. Biochem., 68, 459–486.

  • Kamath L, Meydani A, Foss F and Kuliopulos A . (2001). Cancer Res., 61, 5933–5940.

  • Kawasaki K, Smith Jr RS, Hsieh CM, Sun J, Chao J and Liao JK . (2003). Mol. Cell. Biol., 23, 5726–5737.

  • Kisley LR, Barrett BS, Bauer AK, Dwyer-Nield LD, Barthel B, Meyer AM, Thompson DC and Malkinson AM . (2002). Cancer Res., 62, 6850–6856.

  • Kotelevets L, Noe V, Bruyneel E, Myssiakine E, Chastre E, Mareel M and Gespach C . (1998). J. Biol. Chem., 273, 14138–14145.

  • Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K and Ito M . (1997). J. Biol. Chem., 272, 12257–12260.

  • Le Floch N, Rivat C, De Wever O, Bruyneel E, Mareel M, Dale T and Gespach C . (2005). FASEB J., 19, 144–147 .

  • Ledda MF, Adris S, Bravo AI, Kairiyama C, Bover L, Chernajovsky Y, Mordoh J and Podhajcer OL . (1997). Nat. Med., 3, 171–176.

  • Liotta LA and Kohn EC . (2001). Nature, 411, 375–379.

  • Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S and Gutkind JS . (2004). Mol. Cell, 14, 29–41.

  • Maschler S, Grunert S, Danielopol A, Beug H and Wirl G . (2004). Oncogene, 23, 3622–3633.

  • McHardy LM, Sinotte R, Troussard A, Sheldon C, Church J, Williams DE, Andersen RJ, Dedhar S, Roberge M and Roskelley CD . (2004). Cancer Res., 64, 1468–1474.

  • Murphy-Ullrich JE, Lane TF, Pallero MA and Sage EH . (1995). J. Cell. Biochem., 57, 341–350.

  • Nguyen QD, Faivre S, Bruyneel E, Rivat C, Seto M, Endo T, Mareel M, Emami S and Gespach C . (2002). FASEB J., 16, 565–576.

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S and Comoglio PM . (2003). Cancer Cell, 3, 347–361.

  • Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J and Leffall LD . (2005). Nat. Med., 11, 481–483.

  • Porte H, Chastre E, Prevot S, Nordlinger B, Empereur S, Basset P, Chambon P and Gespach C . (1995). Int. J. Cancer, 64, 70–75.

  • Ricort JM, Lombet A, Lassarre C and Binoux M . (2002). FEBS Lett., 527, 293–297.

  • Ridley AJ . (2001). J. Cell Sci., 114, 2713–2722.

  • Rivat C, Le Floch N, Sabbah M, Teyrol I, Redeuilh G, Bruyneel E, Mareel M, Matrisian LM, Crawford HC, Gespach C and Attoub S . (2003). FASEB J., 17, 1721–1723.

  • Rodrigues S, Attoub S, Nguyen QD, Bruyneel E, Rodrigue CM, Westley BR, May FE, Thim L, Mareel M, Emami S and Gespach C . (2003). Oncogene, 22, 4488–4497.

  • Rodrigues S, Nguyen QD, Faivre S, Bruyneel E, Thim L, Westley B, May F, Flatau G, Mareel M, Gespach C and Emami S . (2001). FASEB J., 15, 1517–1528.

  • Sandu OA, Ito M and Begum N . (2001). J. Appl. Physiol., 91, 1475–1482.

  • Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P and Loirand G . (2000). J. Biol. Chem., 275, 21722–21729.

  • Sawada N, Itoh H, Yamashita J, Doi K, Inoue M, Masatsugu K, Fukunaga Y, Sakaguchi S, Sone M, Yamahara K, Yurugi T and Nakao K . (2001). Biochem. Biophys. Res. Commun., 280, 798–805.

  • Schafer B, Gschwind A and Ullrich A . (2004). Oncogene, 23, 991–999.

  • Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schroder H, Schroeder W, Stahl E, Steinke W, Straub A and Schramm M . (2001). Nature, 410, 212–215.

  • Thomas R, True LD, Bassuk JA, Lange PH and Vessella RL . (2000). Clin. Cancer Res., 6, 1140–1149.

  • Van Obberghen-Schilling E, Vouret-Craviari V, Chen YH, Grall D, Chambard JC and Pouyssegur J . (1995). Ann. NY Acad. Sci., 766, 431–441.

  • Wojtukiewicz MZ, Tang DG, Ben-Josef E, Renaud C, Walz DA and Honn KV . (1995). Cancer Res., 55, 698–704.

  • Xie WZ, Leibl M, Clark MR, Dohrmann P, Kunze T and Gieseler F . (2005). Biomed. Pharmacother., 59, 70–75.

  • Zhao D, Zhan Y, Koon HW, Zeng H, Keates S, Moyer MP and Pothoulakis C . (2004). J. Biol. Chem., 279, 43547–43554.

Download references

Acknowledgements

This work was aided by INSERM, IPSEN (PhD grant to Q-DN), and the FORTIS Verzekeringen (Brussels, Belgium). We thank Dr Rudolph for the characterization of malignant effusions-derived cancer cells, Miss C Boissard and Mr M Clark for valuable technical assistance, and Dr K Kaibuchi, Dr L Zardi, Dr G Flatau, Dr WJ Nelson, Dr J-P Stasch, Dr B Westley, and Yoshitomi Pharmaceutical Industries Ltd (Osaka, Japan) for sharing materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gespach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, QD., De Wever, O., Bruyneel, E. et al. Commutators of PAR-1 signaling in cancer cell invasion reveal an essential role of the Rho–Rho kinase axis and tumor microenvironment. Oncogene 24, 8240–8251 (2005). https://doi.org/10.1038/sj.onc.1208990

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208990

Keywords

This article is cited by

Search

Quick links