Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Gadd45a regulates matrix metalloproteinases by suppressing ΔNp63α and β-catenin via p38 MAP kinase and APC complex activation

Abstract

The p53-regulated growth arrest and DNA damage-inducible gene product Gadd45a has been recently identified as a key factor protecting the epidermis against ultraviolet radiation (UVR)-induced skin tumors by activating p53 via the stress mitogen-activated protein kinase (MAPK) signaling pathway. Herein we identify Gadd45a as an important negative regulator of two oncogenes commonly over-expressed in epithelial tumors: the p53 homologue ΔNp63α and β-catenin. ΔNp63α is one of the several p63 isoforms and is the predominant species expressed in basal epidermal keratinocytes. ΔNp63α lacks the N-terminal transactivation domain and behaves as a dominant-negative factor blocking expression of several p53-effector genes. ΔNp63α also associates with and blocks activation of the adenomatous polyposis coli (APC) destruction complex that targets free cytoplasmic β-catenin for degradation. While most β-catenin protein is localized to the cell membrane and is involved in cell–cell adhesion, accumulation of free cytoplasmic β-catenin will translocate into the nucleus where it functions in a bipartite transcription factor complex, whose targets include invasion and metastasis promoting endopeptidases, matrix metalloproteinases (MMP). We show that Gadd45a not only directly associates with two components of the APC complex, namely protein phosphatase 2A (PP2A) and glycogen synthase kinase 3β (GSK3β) but also promotes GSK3β dephosphorylation at Ser9, which is essential for GSK3β activation, and resultant activation of the APC destruction complex. We demonstrate that lack of Gadd45a not only prevents ΔNp63α suppression and GSK3β dephosphorylation but also prevents free cytoplasmic β-catenin degradation after UV irradiation. The inability of Gadd45a-null keratinocytes to suppress β-catenin may contribute to the resulting observation of increased MMP expression and activity along with significantly faster keratinocyte migration in Matrigel in vitro and accelerated wound closure in vivo. Furthermore, epidermal keratinocytes treated with p38 MAPK inhibitors, both in vivo and in vitro, behave very similarly to Gadd45a-null keratinocytes after UVR. Similarly, Trp53-null mice are unable to attenuate ΔNp63α expression in epidermal keratinocytes after such stress. These findings demonstrate a dependence on Gadd45a-mediated p38 MAPK and p53 activation for proper modulation of ΔNp63α, GSK3β, and β-catenin after irradiation. Taken together, our results indicate that Gadd45a is able to repress ΔNp63α, β-catenin, and consequently MMP expression by two means: by maintaining UVR-induced p38 MAPK and p53 activation and also by associating with the APC complex. This implicates Gadd45a in the negative regulation of cell migration, and invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amundson SA, Myers TG and Fornace Jr AJ . (1998). Oncogene, 17, 3287–3300.

  • Behrens J . (2000). Ann. N. Y. Acad. Sci., 910, 21–33, discussion 33-5.

  • Brabletz T, Jung A, Dag S, Hlubek F and Kirchner T . (1999). Am. J. Pathol., 155, 1033–1038.

  • Brinckerhoff CE and Matrisian LM . (2002). Nat. Rev. Mol. Cell. Biol., 3, 207–214.

  • Bulavin D, Saito SI, Hollander MC, Sakaguchi K, Anderson CW, Appella E and Fornace Jr AJ . (1999). EMBO J., 18, 6845–6854.

  • Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P and Matrisian LM . (1999). Oncogene, 18, 2883–2891.

  • Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, Ratovitski EA, Jen J and Sidransky D . (2000). Proc. Natl. Acad. Sci. USA, 97, 5462–5467.

  • Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, Vardanian L and Fornace AJJ . (2002). Cancer Res., 62, 7305–7315.

  • Hu H, Xia SH, Li AD, Xu X, Cai Y, Han YL, Wei F, Chen BS, Huang XP, Han YS, Zhang JW, Zhang X, Wu M and Wang MR . (2002). Int. J. Cancer, 102, 580–583.

  • Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S and Kikuchi A . (1998). EMBO J., 17, 1371–1384.

  • Karelina TV, Goldberg GI and Eisen AZ . (1994). J. Invest. Dermatol., 103, 482–487.

  • Kusukawa J, Harada H, Shima I, Sasaguri Y, Kameyama T and Morimatsu M . (1996). Eur. J. Cancer B. Oral Oncol., 32B, 217–221.

  • Leethanakul C, Patel V, Gillespie J, Pallente M, Ensley JF, Koontongkaew S, Liotta LA, Emmert-Buck M and Gutkind JS . (2000). Oncogene, 19, 3220–3224.

  • Li G, Mitchell DL, Ho VC, Reed JC and Tron VA . (1996). Am. J. Pathol., 148, 1113–1123.

  • Liefer KM, Koster MI, Wang XJ, Yang A, McKeon F and Roop DR . (2000). Cancer Res., 60, 4016–4020.

  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X and He X . (2002). Cell, 108, 837–847.

  • Martin-Blanco E . (2000). BioEssays, 22, 637–645.

  • McCawley LJ and Matrisian LM . (2000). Mol. Med. Today, 6, 149–156.

  • Miller DL and Weinstock MA . (1994). J. Am. Acad. Dermatol., 30, 774–778.

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR and Bradley A . (1999). Nature, 398, 708–713.

  • Moon RT, Bowerman B, Boutros M and Perrimon N . (2002). Science, 296, 1644–1646.

  • Morin PJ . (1999). BioEssays, 21, 1021–1030.

  • Muller D, Breathnach R, Engelmann A, Millon R, Bronner G, Flesch H, Dumont P, Eber M and Abecassis J . (1991). Int. J. Cancer, 48, 550–556.

  • Park BJ, Lee SJ, Kim JI, Lee SJ, Lee CH, Chang SG, Park JH and Chi SG . (2000). Cancer Res., 60, 3370–3374.

  • Parsa R, Yang A, McKeon F and Green H . (1999). J. Invest. Dermatol., 113, 1099–1105.

  • Patturajan M, Nomoto S, Sommer M, Fomenkov A, Hibi K, Zangen R, Poliak N, Califano J, Trink B, Ratovitski E and Sidransky D . (2002). Cancer Cell, 1, 369–379.

  • Peifer M. and Polakis P . (2000). Science, 287, 1606–1609.

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F and De LM . (2001). Proc. Natl. Acad. Sci. USA, 98, 3156–3161.

  • Pelosi G, Pasini F, Olsen SC, Pastorino U, Maisonneuve P, Sonzogni A, Maffini F, Pruneri G, Fraggetta F, Cavallon A, Roz E, Iannucci A, Bresaola E and Viale G . (2002). J. Pathol., 198, 100–109.

  • Polakis P . (2000). Genes Dev., 14, 1837–1851.

  • Powell WC, Knox JD, Navre M, Grogan TM, Kittelson J, Nagle RB and Bowden GT . (1993). Cancer Res., 53, 417–422.

  • Pyke C, Ralfkiaer E, Huhtala P, Hurskainen T, Dano K and Tryggvason K . (1992). Cancer Res., 52, 1336–1341.

  • Quinn AG . (1997). Br. J. Hosp. Med., 58, 261–264.

  • Ratovitski EA, Patturajan M, Hibi K, Trink B, Yamaguchi K and Sidransky D . (2001). Proc. Natl. Acad. Sci. USA, 98, 1817–1822.

  • Robinson MJ and Cobb MH . (1997). Curr. Opin. Cell. Biol., 9, 180–186.

  • Sakanaka C . (2002). J. Biochem. (Tokyo), 132, 697–703.

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A . (1999). Proc. Natl. Acad. Sci. USA, 96, 5522–5527.

  • Takahashi M, Tsunoda T, Seiki M, Nakamura Y and Furukawa Y . (2002). Oncogene, 21, 5861–5867.

  • Tetsu O and McCormick F . (1999). Nature, 398, 422–426.

  • Tsukifuji R, Tagawa K, Hatamochi A and Shinkai H . (1999). Br. J. Cancer, 80, 1087–1091.

  • Urist MJ, Di CCJ, Lu ML, Charytonowicz E, Verbel D, Crum CP, Ince TA, McKeon FD and Cordon-Cardo C . (2002). Am. J. Pathol., 161, 1199–1206.

  • van EJH, Barker N and Clevers H . (2003). Curr. Opin. Genet. Dev., 13, 28–33.

  • Vihinen P and Kahari VM . (2002). Int. J. Cancer, 99, 157–166.

  • Vousden KH and Lu X . (2002). Nat. Rev. Cancer, 2, 594–604.

  • Yamaguchi K, Wu L, Caballero OL, Hibi K, Trink B, Resto V, Cairns P, Okami K, Koch WM, Sidransky D and Jen J . (2000). Int. J. Cancer, 86, 684–689.

  • Yamamoto H, Itoh F, Hinoda Y and Imai K . (1995). Int. J. Cancer, 61, 218–222.

  • Yamasawa K, Nio Y, Dong M, Yamaguchi K and Itakura M . (2002). Clin. Cancer Res., 8, 2563–2569.

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D and McKeon F . (1998). Mol. Cell, 2, 305–316.

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C and McKeon F . (1999). Nature, 398, 714–718.

  • Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Jacks T and Brash DE . (1994). Nature, 372, 773–776.

Download references

Acknowledgements

We thank Drs Dennis Roop and Merenke Koster for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J Fornace Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildesheim, J., Belova, G., Tyner, S. et al. Gadd45a regulates matrix metalloproteinases by suppressing ΔNp63α and β-catenin via p38 MAP kinase and APC complex activation. Oncogene 23, 1829–1837 (2004). https://doi.org/10.1038/sj.onc.1207301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207301

Keywords

This article is cited by

Search

Quick links