Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structural basis for specificity in human ABO(H) blood group biosynthesis

Abstract

The human ABO(H) blood group antigens are produced by specific glycosyltransferase enzymes. An N-acetylgalactosaminyltransferase (GTA) uses a UDP-GalNAc donor to convert the H-antigen acceptor to the A antigen, whereas a galactosyltransferase (GTB) uses a UDP-galactose donor to convert the H-antigen acceptor to the B antigen. GTA and GTB differ only in the identity of four critical amino acid residues. Crystal structures at 1.8–1.32 Å resolution of the GTA and GTB enzymes both free and in complex with disaccharide H-antigen acceptor and UDP reveal the basis for donor and acceptor specificity and show that only two of the critical amino acid residues are positioned to contact donor or acceptor substrates. Given the need for stringent stereo- and regioselectivity in this biosynthesis, these structures further demonstrate that the ability of the two enzymes to distinguish between the A and B donors is largely determined by a single amino acid residue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SETOR35 diagram of GTB structure.
Figure 2: Active site of GTB
Figure 3: Substrates versus critical amino acids.
Figure 4: Candidate enzyme nucleophile.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Landsteiner, K. Wein Klin. Wschr. 14, 1132–1134 (1901).

    Google Scholar 

  2. Watkins, W.M. & Morgan, W.T.J. Nature 180, 1038–1040 (1957).

    Article  CAS  Google Scholar 

  3. Kabat, E.A. Blood Group Substances: Their Chemistry and Immunochemistry (Academic Press, New York; 1956).

    Google Scholar 

  4. Watkins, W.M. & Morgan, W.T.J. Vox. Sang. 4, 97–119 (1959).

    Article  CAS  Google Scholar 

  5. Tuppy, H. & Staudenbauer, W.L. Nature 210, 316–317 (1966).

    Article  CAS  Google Scholar 

  6. Hearn, V.M., Smith, Z.G. & Watkins, W.M. Biochem. J. 109, 315–317 (1968).

    Article  CAS  Google Scholar 

  7. Kobata, A., Grollman, E.F. & Ginsburg, V. Biochem. Biophys. Res. Commun. 32, 272–277 (1968).

    Article  CAS  Google Scholar 

  8. Yamamoto, F., Clausen, H., White, T., Marken, J. & Hakomori, S. Nature 345, 229–233 (1990).

    Article  CAS  Google Scholar 

  9. Gastinel, L.N. et al. EMBO J. 20, 638–649 (2001).

    Article  CAS  Google Scholar 

  10. Boix, E. et al. J. Biol. Chem. 276, 48608–48614 (2001).

    Article  CAS  Google Scholar 

  11. Breton, C., Bettler, E., Joziasse, D.H., Geremia, R.A. & Imberty, A. J. Biochem. 123, 1000–1009 (1998).

    Article  CAS  Google Scholar 

  12. Busch, C. et al. J. Biol. Chem. 273, 19566–19572 (1998).

    Article  CAS  Google Scholar 

  13. Persson, K. et al. Nature Struct. Biol. 8, 166–175 (2001).

    Article  CAS  Google Scholar 

  14. Charnock, S.J. & Davies, G.J. Biochemistry 38, 6380–6385 (1999).

    Article  CAS  Google Scholar 

  15. Ünligil, U.M. et al. EMBO J. 19, 5269–5280 (2000).

    Article  Google Scholar 

  16. Pedersen, L.C. et al. J. Biol. Chem. 275, 34580–34585 (2000).

    Article  CAS  Google Scholar 

  17. Gastinel, L.N., Cambillau, C. & Bourne, Y. EMBO J. 18, 3546–3557 (1999).

    Article  CAS  Google Scholar 

  18. Lowary, T.L. & Hindsgaul, O. Carbhydr. Res. 249, 163–195 (1993).

    Article  CAS  Google Scholar 

  19. Lowary, T.L. & Hindsgaul, O. Carbhydr. Res. 251, 33–67 (1994).

    Article  CAS  Google Scholar 

  20. Mukherjee, A., Palcic, M.M. & Hindsgaul, O. Carbhydr. Res. 326, 1–21 (2000).

    Article  CAS  Google Scholar 

  21. Kamath, V.P., Seto, N.O.L., Compston, C.A., Hindsgaul, O. & Palcic, M.M. Glycoconj. J. 16, 599–606 (1999).

    Article  CAS  Google Scholar 

  22. Seto, N.O.L. et al. J. Biol. Chem. 272, 14133–14138 (1997).

    Article  CAS  Google Scholar 

  23. Seto, N.O.L. et al. Eur. J. Biochem. 259, 770–775 (1999).

    Article  CAS  Google Scholar 

  24. Vrielink, A., Rüger, W., Driessen, H.P.C. & Freemont, P.S. EMBO J. 13, 3413–3422 (1994).

    Article  CAS  Google Scholar 

  25. Moréra, S., Imberty, A., Aschke-Sonnenborn, U., Rüger, W. & Freemont, P.S. J. Mol. Biol. 292, 717–730 (1999).

    Article  Google Scholar 

  26. Takayama, S. et al. Bioorg. Med. Chem. 7, 401–409 (1999).

    Article  CAS  Google Scholar 

  27. Davies, G.J., Sinnott, M.L. & Withers, S.G. in Comprehensive Biological Catalysis Vol. I (ed. Sinnott, M.L.) 119–209 (Academic Press, San Diego; 1998).

    Google Scholar 

  28. Sinnott, M.L. Chem. Rev. 90, 1171–1202 (1990)

    Article  CAS  Google Scholar 

  29. Ly, H.D. & Withers, S.G. Annu. Rev. Biochem. 68, 487–522 (1999).

    Article  CAS  Google Scholar 

  30. Seto, N.O.L., Compston, C.A., Szpacenko, A. & Palcic, M.M. Carbohydr. Res. 324, 161–169 (2000).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  32. Smith, G.D., Nagar, B., Rini, J.M., Hauptman, H.A & Blessing, R.H. Acta Crystallogr. D 54, 799–804 (1998).

    Article  CAS  Google Scholar 

  33. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  34. van Asselt, E.J., Perrakis, A., Kalk, K.H., Lamzin, V.S. & Dijkstra, B.W. Acta Crystallogr. D 54, 58–73 (1998).

    Article  CAS  Google Scholar 

  35. Evans, S.V. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.I.P. and S.V.E. thank the Canadian Institutes of Health Research for salary support and funding. M.M.P. thanks the Natural Sciences and Engineering Research Council of Canada for funding. The authors thank D.R. Bundle and O. Hindsgaul for helpful discussions, as well as C. Weeks, J. Berendzen and R.W. Grosse-Kuntsleeve for help while at Brookhaven National Laboratories beamlines X4A, X8C and X12C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen V. Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patenaude, S., Seto, N., Borisova, S. et al. The structural basis for specificity in human ABO(H) blood group biosynthesis. Nat Struct Mol Biol 9, 685–690 (2002). https://doi.org/10.1038/nsb832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing