Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early organization of pre-mRNA during spliceosome assembly

Abstract

Intron excision from precursor mRNAs (pre-mRNAs) in eukaryotes requires juxtaposition of reactive functionalities within the substrate at the heart of the spliceosome where the two chemical steps of splicing occur. Although a series of interactions between pre-mRNAs, pre-spliceosomal and spliceosomal factors is well established, the molecular mechanisms of splicing machinery assembly, as well as the temporal basis for organization of the substrate for splicing, remain poorly understood. Here we have used a directed hydroxyl radical probe tethered to pre-mRNA substrates to map the structure of the pre-mRNA substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly/recruitment and suggest a mechanism for the formation of the final active site of the mature spliceosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and splicing of pre-mRNA site-specifically modified with Fe-BABE.
Figure 2: Directed hydroxyl radical probing in the spliceosome and pre-spliceosome.
Figure 3: Factor and sequence dependence of E complex formation and Fe-BABE-mediated cleavages.
Figure 4: Early organization of pre-mRNA in spliceosome assembly.

Similar content being viewed by others

References

  1. Krämer, A. Annu. Rev. Biochem. 65, 367–409 (1996).

    Article  PubMed  Google Scholar 

  2. Staley, J.P. & Guthrie, C. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Burge, C.B., Tuschl, T. & Sharp, P.A. in The RNA World 2nd edn (eds Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 525–560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1999).

    Google Scholar 

  4. Das, R., Zhou, Z. & Reed, R. Mol. Cell 5, 779–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Zamore, P.D., Patton, J.G. & Green, M.R. Nature 355, 609–614 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Staknis, D. & Reed, R. Mol. Cell. Biol. 14, 7670–7682 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berglund, J.A., Chua, K., Abovich, N., Reed, R. & Rosbash, M. Cell 89, 781–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Merendino, L., Guth, S., Bilbao, D., Martinez, C. & Valcarcel, J. Nature 402, 838–841 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, S., Romfo, C.M., Nilsen, T.W. & Green, M.R. Nature 402, 832–835 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Zorio, D.A. & Blumenthal, T. Nature 402, 835–838 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Das, R. & Reed, R. RNA 5, 1504–1508 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Konarska, M.M. & Sharp, P.A. Cell 46, 845–855 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Query, C.C., Moore, M.J. & Sharp, P.A. Genes Dev. 8, 587–597 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Newman, A.J. EMBO J. 16, 5797–5800 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker, R. & Siliciano, P.G. Nature 361, 660–662 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Deirdre, A., Scadden, J. & Smith, C.W. EMBO J. 14, 3236–3246 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, J.Y. & Maniatis, T. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Abovich, N. & Rosbash, M. Cell 89, 403–412 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Reed, R. Curr. Opin. Cell Biol. 12, 340–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Han, H. & Dervan, P.B. Proc. Natl. Acad. Sci. USA 91, 4955–4959 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson, K.S. & Noller, H.F. Cell 92, 131–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Moore, M.J. & Sharp, P.A. Science 256, 992–997 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. MacMillan, A.M. et al. Genes Dev. 8, 3008–3020 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Allerson, C.R. & Verdine, G.L. Chem. Biol. 2, 667–675 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. MacMillan, A.M. & Verdine, G.L. Tetrahedron 47, 2603–2616 (1991).

    Article  CAS  Google Scholar 

  26. Rana, T. & Meares, C. J. Am. Chem. Soc. 112, 2457–2458 (1991).

    Article  Google Scholar 

  27. Stern, S., Moazed, D. & Noller, H. Methods Enzymol. 164, 481–489 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Whirl-Carrillo M., Gabashvili I.S., Bada M., Banatao D.R. & Altman R.B RNA 8, 279–289 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blencowe, B.J., Sproat, B.S., Ryder, U., Barabino, S. & Lamond, A.I. Cell 59, 531–539 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Blencowe, B.J. & Lamond, A.I. Methods Mol. Biol. 118, 275–287 (1999).

    CAS  PubMed  Google Scholar 

  31. Roscigno, R.F. & Garcia-Blanco, M.A. RNA 1, 692–706 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zahler, A.M., Lane, W.S., Stolk, J.A. & Roth, M.B. Genes Dev. 6, 837–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Stark, J.M., Bazett-Jones, D.P., Herfort, M. & Roth, M.B. Proc. Natl. Acad. Sci. USA 95, 2163–2168 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Champion-Arnaud, P., Gozani, O., Palandjian, L. & Reed, R. Mol. Cell. Biol. 15, 5750–5756 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson, K. & Moore, M.J. Science 276, 1712–1716 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Stevens, S.W. et al. Mol. Cell 9, 31–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Jamison, S.F. & Garcia-Blanco, M.A. Proc. Natl. Acad. Sci. USA 89, 5482–5486 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stark, H., Dube, P., Luhrmann, R. & Kastner, B. Nature 409, 539–542 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Query, K. Wilson, M. Glover, S. Chaulk and A. Ghetu for helpful advice and discussions and D. Sigman and C. Meares for help in the early stages of this work. O.A.K. is supported by a graduate fellowship from the Alberta Heritage Foundation for Medical Research (AHFMR). This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by an establishment grant from AHFMR to A.M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, O., MacMillan, A. Early organization of pre-mRNA during spliceosome assembly. Nat Struct Mol Biol 9, 576–581 (2002). https://doi.org/10.1038/nsb822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb822

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing