Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase

Abstract

DOPA decarboxylase (DDC) is responsible for the synthesis of the key neurotransmitters dopamine and serotonin via decarboxylation of l-3,4-dihydroxyphenylalanine (l-DOPA) and l-5-hydroxytryptophan, respectively. DDC has been implicated in a number of clinic disorders, including Parkinson's disease and hypertension. Peripheral inhibitors of DDC are currently used to treat these diseases. We present the crystal structures of ligand-free DDC and its complex with the anti-Parkinson drug carbiDOPA. The inhibitor is bound to the enzyme by forming a hydrazone linkage with the cofactor, and its catechol ring is deeply buried in the active site cleft. The structures provide the molecular basis for the development of new inhibitors of DDC with better pharmacological characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Stereo view ribbon diagram of the polypeptide backbone of DDC.
Figure 3: Active site cleft of DDC in complex with carbiDOPA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Feany, M.B. & Bender, W.W. Nature 404, 394–398 (2000).

    Article  CAS  Google Scholar 

  2. Masliah, E. et al. Science 287, 1265–1269 (2000).

    Article  CAS  Google Scholar 

  3. Aminoff, M.J. West J. Med. 161, 303–308 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Opacka-Juffry, J. & Brooks, D.J. Mov. Disord. 10, 241–249 (1995).

    Article  CAS  Google Scholar 

  5. Agid, Y., Chase, T. & Marsden, D. Lancet 351, 851–852 (1998).

    Article  CAS  Google Scholar 

  6. Brannan, T., Prikhojan, A. & Yahr, M.D. J. Neural Transm. 103, 1287–1294 (1996).

    Article  CAS  Google Scholar 

  7. Kordower, J.H. et al. Science 290, 767–773 (2000).

    Article  CAS  Google Scholar 

  8. Kang, U.J. Mov. Disord. 13, 59–72 (1998).

    PubMed  Google Scholar 

  9. Diederich, C. et al. Pharmacology 55, 109–116 (1997).

    Article  CAS  Google Scholar 

  10. Myers, C.S., Witten, M., Yu, Y.L. & Wagner, G.C. Mol. Chem. Neuropathol. 33, 81–97 (1998).

    Article  CAS  Google Scholar 

  11. Malashkevich, V.N. et al. J. Mol. Biol. 224, 1167–1170 (1992).

    Article  CAS  Google Scholar 

  12. Alexander, F.W., Sandmeier, E., Mehta, P.K. & Christen, P. Eur. J. Biochem. 219, 953–960 (1994).

    Article  CAS  Google Scholar 

  13. Ford, G.C., Eichele, G. & Jansonius, J.N. Proc. Natl. Acad. Sci. USA 77, 2559–2563 (1980).

    Article  CAS  Google Scholar 

  14. John, R.A. Biochim. Biophys. Acta 1248, 81–96 (1995).

    Article  Google Scholar 

  15. Schneider, G., Kack, H. & Lindqvist, Y. Struct. Fold. Des. 8, 1–6 (2000).

    Article  Google Scholar 

  16. Jansonius, J.N. Curr. Opin. Strut. Biol. 8, 759–769 (1998).

    Article  CAS  Google Scholar 

  17. Momany, C., Ernst, S., Ghosh, R., Chang, N.L. & Hackert, M.L. J. Mol. Biol. 252, 643–655 (1995).

    Article  CAS  Google Scholar 

  18. Toney, M.D., Hohenester, E., Cowan, S.W. & Jansonius, J.N. Science 261, 756–759 (1993).

    Article  CAS  Google Scholar 

  19. Burkhard, P. et al. J. Mol. Biol. 283, 121–133 (1998).

    Article  CAS  Google Scholar 

  20. Dominici, P., Moore, P.S., Castellani, S., Bertoldi, M. & Voltattorni, C.B. Protein Sci. 6, 2007–2015 (1997).

    Article  CAS  Google Scholar 

  21. Ishii, S., Mizuguchi, H., Nishino, J., Hayashi, H. & Kagamiyama, H. J. Biochem. (Tokyo) 120, 369–376 (1996).

    Article  CAS  Google Scholar 

  22. Momany, C., Ghosh, R. & Hackert, M.L. Protein Sci. 4, 849–854 (1995).

    Article  CAS  Google Scholar 

  23. Malashkevich, V.N., Strop, P., Keller, J.W., Jansonius, J.N. & Toney, M.D. J. Mol. Biol. 294, 193–200 (1999).

    Article  CAS  Google Scholar 

  24. Bertoldi, M., Castellani, S. & Bori Voltattorni, C. Eur. J. Biochem. 268, 2975–2981 (2001).

    Article  CAS  Google Scholar 

  25. Tramonti, A., De Biase, D., Giartosio, A., Bossa, F. & John, R.A. J. Biol. Chem. 273, 1939–1945 (1998).

    Article  CAS  Google Scholar 

  26. Poupon, A. et al. Proteins 37, 191–203 (1999).

    Article  CAS  Google Scholar 

  27. Nishino, J., Hayashi, H., Ishii, S. & Kagamiyama, H. J. Biochem. (Tokyo) 121, 604–611 (1997).

    Article  CAS  Google Scholar 

  28. Dunathan, H.C. Proc. Natl. Acad. Sci. USA 55, 712–716 (1966).

    Article  CAS  Google Scholar 

  29. Bertoldi, M., Frigeri, P., Paci, M. & Voltattorni, C.B. J. Biol. Chem. 274, 5514–5521 (1999).

    Article  CAS  Google Scholar 

  30. Ishii, S., Hayashi, H., Okamoto, A. & Kagamiyama, H. Protein Sci. 7, 1802–1810 (1998).

    Article  CAS  Google Scholar 

  31. Kirsch, J.F. et al. J. Mol. Biol. 174, 497–525 (1984).

    Article  CAS  Google Scholar 

  32. Hennig, M., Grimm, B., Contestabile, R., John, R.A. & Jansonius, J.N. Proc. Natl. Acad. Sci. USA 94, 4866–4871.(1997).

    Article  CAS  Google Scholar 

  33. Burkhard, P., Tai, C.H., Ristroph, C.M., Cook, P.F. & Jansonius, J.N. J. Mol. Biol. 291, 941–953 (1999).

    Article  CAS  Google Scholar 

  34. Joseph, D., Petsko, G.A. & Karplus, M. Science 249, 1425–1428 (1990).

    Article  CAS  Google Scholar 

  35. First, E.A. & Fersht, A.R. Biochemistry 32, 13658–13663 (1993).

    Article  CAS  Google Scholar 

  36. Kato, H. et al. Biochemistry 33, 4995–4999 (1994).

    Article  CAS  Google Scholar 

  37. Larson, E.M., Larimer, F.W. & Hartman, F.C. Biochemistry 34, 4531–4537 (1995).

    Article  CAS  Google Scholar 

  38. Fetrow, J.S. FASEB J. 9, 708–717 (1995).

    Article  CAS  Google Scholar 

  39. Krupka, H.I., Huber, R., Holt, S.C. & Clausen, T. EMBO J. 19, 3168–3178 (2000).

    Article  CAS  Google Scholar 

  40. Malashkevich, V.N. et al. Acta Crystallogr. D 55, 568–570 (1999).

    Article  CAS  Google Scholar 

  41. McPherson, A. Preparation and analysis of protein crystals. (John Wiley and Sons, Inc., New York; 1982).

    Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffration data collected in oscillation mode. 307–325 (Academic Press, San Diego; 1997).

    Google Scholar 

  43. Leslie, A.G.W. MOSFLM users guide. (MRC-LMB, Cambridge UK; 1994).

    Google Scholar 

  44. CCP4. Acta Crystallogr. D 50, 760–763 (1994).

  45. De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. 472–493 (Academic Press, San Diego; 1997).

    Google Scholar 

  46. Perrakis, A., Sixma, T.K., Wilson, K.S. & Lamzin, V.S. Acta Crystallogr. D 55, 448–455 (1997).

    Article  Google Scholar 

  47. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  48. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  49. Brünger, A.T. et al. Acta Crystallogr D 54, 905–921 (1998).

    Article  Google Scholar 

  50. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Merritt, E.A. & Bacon, D.J. RASTER3D: Photorealistic molecular graphics. 505–524 (Academic Press, San Diego; 1997).

    Google Scholar 

Download references

Acknowledgements

Special thanks go to E. De La Fortelle and C. Vonrhein for extremely helpful discussion and to R. Huber, Max-Planck Institut für Biochemie, Martinsried, Germany, for his kind gift of the tantalum cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Burkhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhard, P., Dominici, P., Borri-Voltattorni, C. et al. Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase. Nat Struct Mol Biol 8, 963–967 (2001). https://doi.org/10.1038/nsb1101-963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1101-963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing