Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural genomics of the human dopamine receptor system

Abstract

The dopaminergic system, including five dopamine receptors (D1R to D5R), plays essential roles in the central nervous system (CNS); and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders, including Parkinson’s Disease (PD) and schizophrenia. Here, we report cryo-EM structures of all five subtypes of human dopamine receptors in complex with G protein and bound to the pan-agonist, rotigotine, which is used to treat PD and restless legs syndrome. The structures reveal the basis of rotigotine recognition in different dopamine receptors. Structural analysis together with functional assays illuminate determinants of ligand polypharmacology and selectivity. The structures also uncover the mechanisms of dopamine receptor activation, unique structural features among the five receptor subtypes, and the basis of G protein coupling specificity. Our work provides a comprehensive set of structural templates for the rational design of specific ligands to treat CNS diseases targeting the dopaminergic system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of D1R, D2R, D3R, D4R and D5R signaling complexes.
Fig. 2: Structural feature comparison of all active-state dopamine receptors.
Fig. 3: Rotigotine recognition at all dopamine receptors.
Fig. 4: Polypharmacological profile of rotigotine.
Fig. 5: Comparison of D1R and D5R in rotigotine binding and PAM binding.
Fig. 6: The binding of rotigotine in D4R is regulated by cholesterol.
Fig. 7: G protein coupling of dopamine receptors.

Similar content being viewed by others

Data availability

Density maps and structure coordinates have been deposited in the Electron Microscopy Data Bank (EMDB) and the Protein Data Bank (PDB) with accession codes EMD-35683 and 8IRR for the D1R–Gs–rotigotine complex; EMD-35684 and 8IRS for the D2R–Gi–rotigotine complex; EMD-35685 and 8IRT for the D3R–Gi–rotigotine complex; EMD-35686 and 8IRU for the D4R–Gi–rotigotine complex; EMD-35687 and 8IRV for the D5R–Gs–rotigotine complex.

References

  1. Robbins, T. W. Dopamine and cognition. Curr. Opin. Neurol. 16, S1–S2 (2003).

    PubMed  Google Scholar 

  2. Volkow, N. D. et al. Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am. J. Psychiatry 155, 344–349 (1998).

    CAS  PubMed  Google Scholar 

  3. Koob, G. F. Dopamine, addiction and reward. Semin. Neurosci. 4, 139–148 (1992).

    Google Scholar 

  4. Neve, K. A. & Neve, R. L. Molecular biology of dopamine receptors. In: Neve, K. A. & Neve, R. L. (eds) The Dopamine Receptors. The Receptors. (Humana Press, Totowa, 1997).

  5. Bonuccelli, U., Del Dotto, P. & Rascol, O. Role of dopamine receptor agonists in the treatment of early Parkinson’s disease. Parkinsonism Relat. Disord. 15, S44–S53 (2009).

    PubMed  Google Scholar 

  6. Martel, J. C. & Gatti McArthur, S. Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in schizophrenia. Front. Pharmacol. 11, 1003 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Faraone, S. V. & Biederman, J. Neurobiology of attention-deficit hyperactivity disorder. Biol. Psychiatry 44, 951–958 (1998).

    CAS  PubMed  Google Scholar 

  8. Mao, Q., Qin, W.-Z., Zhang, A. & Ye, N. Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharmacol. Sin. 41, 471–482 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reynolds, N. A., Wellington, K. & Easthope, S. E. Rotigotine. CNS Drugs 19, 973–981 (2005).

    CAS  PubMed  Google Scholar 

  10. Bogan, R. K. From bench to bedside: an overview of rotigotine for the treatment of restless legs syndrome. Clin. Ther. 36, 436–455 (2014).

    CAS  PubMed  Google Scholar 

  11. Zhuang, Y. et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184, 931–942.e18 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu, P. et al. Structures of the human dopamine D3 receptor-Gi complexes. Mol. Cell 81, 1147–1159.e4 (2021).

    CAS  PubMed  Google Scholar 

  13. Yin, J. et al. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature 584, 125–129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chien, E. Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Im, D. et al. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  16. Wang, S. et al. D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358, 381–386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao, P. et al. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 184, 943–956.e18 (2021).

    CAS  PubMed  Google Scholar 

  18. Teng, X. et al. Ligand recognition and biased agonism of the D1 dopamine receptor. Nat. Commun. 13, 3186 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang, Y.-L. et al. Dominant negative G proteins enhance formation and purification of agonist-GPCR-G protein complexes for structure determination. ACS Pharmacol. Transl. Sci. 1, 12–20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, P. et al. The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer. Acta Pharmacol. Sin. 37, 1259–1272 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nehmé, R. et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One 12, e0175642 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Duan, J. et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat. Commun. 11, 4121 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 1–9 (2018).

    Google Scholar 

  26. Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 593–596 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, B. et al. Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat. Commun. 12, 3305 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, S. et al. GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol. Cell 82, 2681–2695.e6 (2022).

    CAS  PubMed  Google Scholar 

  29. Reichmann, H. et al. Ergoline and non-ergoline derivatives in the treatment of Parkinson’s disease. J. Neurol. 253, IV36–IV38 (2006).

    PubMed  Google Scholar 

  30. Hao, J. et al. Synthesis and pharmacological characterization of 2-(2,6-dichlorophenyl)-1-((1S,3R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one (LY3154207), a potent, subtype selective, and orally available positive allosteric modulator of the human dopamine D1 Receptor. J. Med. Chem. 62, 8711–8732 (2019).

    CAS  PubMed  Google Scholar 

  31. Xu, P. et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469–473 (2021).

    CAS  PubMed  Google Scholar 

  32. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein–coupled receptor activation. Ann. Rev. Biochem. 87, 897 (2018).

    CAS  PubMed  Google Scholar 

  33. Manglik, A. & Kruse, A. C. Structural basis for G protein-coupled receptor activation. Biochemistry 56, 5628–5634 (2017).

    CAS  PubMed  Google Scholar 

  34. Zhou, Y., Cao, C., He, L., Wang, X. & Zhang, X. C. Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. Elife 8, e48822 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, P. et al. Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nat. Struct. Mol. Biol. 29, 863–870 (2022).

    CAS  PubMed  Google Scholar 

  36. Huang, S. et al. Structural basis for recognition of anti-migraine drug lasmiditan by the serotonin receptor 5-HT1F-G protein complex. Cell Res. 31, 1036–1038 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rasmussen, S. G. F. et al. Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Duan, J. et al. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature 609, 854–859 (2022).

    CAS  PubMed  Google Scholar 

  39. Duan, J. et al. Structures of full-length glycoprotein hormone receptor signalling complexes. Nature 598, 688–692 (2021).

    PubMed  Google Scholar 

  40. Wang, Y. et al. Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor. Nat. Commun. 12, 5064 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xing, C. et al. Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex. Cell 180, 645–654.e13 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, S. et al. Molecular basis for hormone recognition and activation of corticotropin-releasing factor receptors. Mol. Cell 77, 669–680.e4 (2020).

    CAS  PubMed  Google Scholar 

  43. Zhao, L. H. et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science 364, 148–153 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carpenter, B., Nehme, R., Warne, T., Leslie, A. G. & Tate, C. G. Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature 536, 104–107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia-Nafria, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. Elife 7, e35946 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Liu, P. et al. The structural basis of the dominant negative phenotype of the Galphai1beta1gamma2 G203A/A326S heterotrimer. Acta Pharmacol. Sin. 37, 1259–1272 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  50. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Heymann, J. B. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci. 27, 159–171 (2018).

    CAS  PubMed  Google Scholar 

  54. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  56. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D Struct. Biol. 74, 519–530 (2018).

    CAS  Google Scholar 

  57. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Google Scholar 

  58. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallor. 66, 12–21 (2010).

    CAS  Google Scholar 

  59. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2020).

    PubMed  PubMed Central  Google Scholar 

  60. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The cryo-EM data were collected at the Center of Cryo-Electron Microscopy, Shanghai Institute of Materia Medica, the Center of Cryo-Electron Microscopy, Zhejiang University, and the Cryo-Electron Microscopy Facility, Zhejiang University Medical Center/Liangzhu laboratory. This work was partially supported by the National Key R&D Programs of China (2018YFA0507002), Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 and XDB08020303) to H.E.X.; the National Key Basic Research Program of China (2019YFA0508800), the Key R&D Projects of Zhejiang Province (2021C03039) and Fundamental Research Funds for the Central Universities (2019XZZX001-01-06) to Yan Z.; the Zhejiang Province Natural Science Fund for Excellent Young Scholars (LR22C050002) and the National Natural Science Foundation of China (32100959) to C.M.; the National Natural Science Foundation of China (31770796) and the National Science and Technology Major Project (2018ZX09711002) to Y.J.; grants from the NIMH Psychoactive Drug Screening Program to X.-P.H., Y.L., B.L.R., and RO1MH112205 to B.E.K. and B.L.R. The Special Research Assistant Project of Chinese Academy of Sciences to Youwen Z.

Author information

Authors and Affiliations

Authors

Contributions

P.X. and S.H. designed the expression constructs, purified the complexes, and prepared protein samples for the D2R–Gi, D3R–Gi, D4R–Gi, and D5R–Gs complexes for cryo-EM data collection. P.X. and S.H. performed cryo-EM grid preparation, data acquisition, structure determination, and prepared the draft of the manuscript and figures. Youwen Z. designed the constructs, prepared the protein samples, conducted cryo-EM data collection and structure determination of D1R–Gs, and participated in the preparation of supplementary figures and manuscript editing. C.M. screened the cryo-EM conditions, prepared the cryo-EM grids, collected cryo-EM images, processed the EM data of the D2R–Gi complex, and participated in the preparation of supplementary figures. P.X. built the models and refined the structures. Yumu Z. and H.L. participated in the sample preparation and screening of the D4R–Gi and the D5R–Gs complexes. Y.W. participated in the sample preparation and screening of the D1R–Gs complex. B.E.K., X.-P.H., and Y.-F.L. performed cAMP, GPCRome, Tango, and radioligand binding assays. B.E.K. compiled assay data and participated in the preparation of the manuscript. X.H. performed the docking studies. W.Y. designed the Gα constructs used for the generation of the D4R–Gi complex. Y.J. participated in the funding acquisition. Yan Z. supervised C.M. and participated in manuscript editing. B.L.R. supervised pharmacological and mutagenesis experiments and participated in manuscript writing. H.E.X. conceived and supervised the project and wrote the manuscript with P.X.

Corresponding authors

Correspondence to Yan Zhang, Bryan L. Roth or H. Eric Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Huang, S., Krumm, B.E. et al. Structural genomics of the human dopamine receptor system. Cell Res 33, 604–616 (2023). https://doi.org/10.1038/s41422-023-00808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00808-0

This article is cited by

Search

Quick links