Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the CO sensing transcription activator CooA

Abstract

CooA is a homodimeric transcription factor that belongs to the catabolite activator protein (CAP) family. Binding of CO to the heme groups of CooA leads to the transcription of genes involved in CO oxidation in Rhodospirillum rubrum. The 2.6 Å structure of reduced (Fe2+) CooA reveals that His 77 in both subunits provides one heme ligand while the N-terminal nitrogen of Pro 2 from the opposite subunit provides the other ligand. A structural comparison of CooA in the absence of effector and DNA (off state) with that of CAP in the effector and DNA bound state (on state) leads to a plausible model for the mechanism of allosteric control in this class of proteins as well as the CO dependent activation of CooA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the overall fold and conformational differences between CooA and CAP with cAMP and DNA bound.
Figure 2: Stereo view of the switch region demonstrating the positions of strictly conserved amino acids in the crystal structures of a, CooA and b, CAP.
Figure 3: Stereo views of the heme environment in CooA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Busby, S. & Ebright, R.H. J. Mol. Biol. 293, 199–213 (1999).

    Article  CAS  Google Scholar 

  2. Crasnier, M. Res. Microbiol. 147, 479–482 (1996).

    Article  CAS  Google Scholar 

  3. McKay, D.B., Weber, I.T. & Steitz, T.A. J. Biol. Chem. 257, 9518– 9524 (1982).

    CAS  PubMed  Google Scholar 

  4. Schultz, S.C., Sheilds, G.C. & Steitz, T.A. Science 253, 1001– 1007 (1991).

    Article  CAS  Google Scholar 

  5. Vaney, M.C., Gilliland, G.L., Harman, J.G., Peterkofsky, A. & Weber, I.T. Biochemistry 28, 4567–4574 (1989).

    Article  Google Scholar 

  6. Weber, I.T. & Steitz, T.A. J. Mol. Biol. 198, 311–326 (1987).

    Article  CAS  Google Scholar 

  7. Craven, P.A. & DeRubertis, F.R. Biochim. Biophys. Acta 745, 310–321 (1983).

    Article  CAS  Google Scholar 

  8. Ignarro, L.J., Degnan, J.N., Baricos, W.H., Kadowitz, P.J. & Wolin, M.S. Biochem. Biophys. Acta 718, 49–59 (1982).

    Article  CAS  Google Scholar 

  9. Yu, A.E., Hu, S.Z., Spiro, T.G. & Burstyn, J.N. J. Am. Chem. Soc. 116, 4117–4118 ( 1994).

    Article  CAS  Google Scholar 

  10. Gilles-Gonzalez, M.A., Gonzalez, G. & Perutz, M.P. Biochemistry 34, 232– 236 (1995).

    Article  CAS  Google Scholar 

  11. Gilles-Gonzalez, M.A., Ditta, G.S. & Helinski, D.R. Nature 350, 170– 172 (1991).

    Article  CAS  Google Scholar 

  12. Rodgers, K.R., Lukat-Rodgers, G.S. & Barron, J.A. Biochemistry 35, 9539– 9548 (1996).

    Article  CAS  Google Scholar 

  13. Aono, S. H. N., Saito, K. & Okada, M. Biochem. Biophys. Res. Commun. 228, 752–756 (1996).

    Article  CAS  Google Scholar 

  14. Shelver, D., Kerby, R.L., He, Y. & Roberts, G.P. Proc. Natl. Acad. Sci. USA 94, 11216–11220 (1997).

    Article  CAS  Google Scholar 

  15. Parkinson, G., et al. J. Mol. Biol. 260, 395– 408 (1996).

    Article  CAS  Google Scholar 

  16. Bell, C.E. & Lewis, M. Nature Struct. Biol. 7 , 209–214 (2000).

    Article  CAS  Google Scholar 

  17. Cheng, X., Kovac, L. & Lee, J.C. Biochemistry 34, 10816– 10826 (1995).

    Article  CAS  Google Scholar 

  18. Leu, S.F., Baker, C.H., Lee, E.J. & Harman, J.G. Biochemistry 38, 6222–6230 ( 1999).

    Article  CAS  Google Scholar 

  19. Cheng, X. & Lee, J.C. Biochemistry 37, 51–60 (1998).

    Article  CAS  Google Scholar 

  20. Shaw, D.J., Rice, D.W. & Guest, J.R. J. Mol. Biol. 166, 241– 247 (1983).

    Article  CAS  Google Scholar 

  21. Kim, J., Adhya, S. & Garges, S. Proc. Natl. Acad. Sci. 89, 9700 –9704 (1992).

    Article  CAS  Google Scholar 

  22. Ryu, S., Kim, J., Adhya, S. & Garges, S. Proc. Natl. Acad. Sci. 90, 75–79 ( 1993).

    Article  CAS  Google Scholar 

  23. Garges, S. & Adhya, S. Cell 41, 745 –751 (1985).

    Article  CAS  Google Scholar 

  24. Aiba, H., Nakamura, T., Mitani, H. & Mori, H. EMBO J. 4, 3329–3332 (1985).

    Article  CAS  Google Scholar 

  25. Reynolds, M.F., et al. Biochemistry 39, 388– 396 (2000).

    Article  CAS  Google Scholar 

  26. Thorsteinsson, M.V., Kerby, R.L. & Roberts, G.P. Biochemistry 39, 8284– 8290 (2000).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  29. Fortelle, E. & Bricogne, G. Methods Enzymol. 276 , 472–494 (1997).

    Article  Google Scholar 

  30. Brünger, A.T. et al. Acta Crystallogr. D 54, 905– 921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Sundaramoorthy and H. Li for help in the initial collection and processing of data. W.N.L. would also like to thank A.L. Pearcy for providing housing in Corona del Mar/Newport Beach during the completion of this work. The authors were supported by the United States Department of Agriculture (W.N.L.), National Science Foundation (T.L.P.), and National Institutes of Health (M.V.T. and G.P.R.). This work is based upon research conducted at the SSRL, which is funded by the Department of Energy (BES, BER) and the National Institutes of Health (NCRR, NIGMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Poulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzilotta, W., Schuller, D., Thorsteinsson, M. et al. Structure of the CO sensing transcription activator CooA. Nat Struct Mol Biol 7, 876–880 (2000). https://doi.org/10.1038/82820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing