Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor

Abstract

The structure of human HGPRT bound to the transition-state analog immucillinGP and Mg2+-pyrophosphate has been determined to 2.0 Å resolution. ImmucillinGP was designed as a stable analog with the stereoelectronic features of the transition state. Bound inhibitor at the catalytic site indicates that the oxocarbenium ion of the transition state is stabilized by neighboring-group participation from MgPPi and O5'. A short hydrogen bond forms between Asp 137 and the purine ring analog. Two Mg2+ ions sandwich the pyrophosphate and contact both hydroxyls of the ribosyl analog. The transition-state analog is shielded from bulk solvent by a catalytic loop that moves ~25 Å to cover the active site and becomes an ordered antiparallel β-sheet.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction catalyzed by HGPRT.
Figure 2: a, Stereo ribbon diagrams of the human HGPRT monomer with bound ImmGP.
Figure 3: a, Stereo view of the 2|Fo - Fc| electron density map contoured at 1σ for bound ImmGP.
Figure 4: Mg2+ octahedral coordinations.
Figure 5: Superpositions of Cα atoms of human HGPRT–GMP complex (green), Toxoplasma gondii HGXPRT apoenzyme (blue) and human HGPRT–ImmGP–MgPPi (red) structures.
Figure 6: Distances for noncovalent interactions between the enzyme, PPi and the bound transition state inhibitor.

Accession codes

Accessions

Protein Data Bank

References

  1. Krenitsky, T.A., Papaioannou, R. & Elion, G.B. Human hypoxanthine phosphoribosyl transferase: purification, properties and specificity. J. Biol. Chem. 244, 1263–1270 (1969).

    CAS  PubMed  Google Scholar 

  2. Ullman, B. & Carter, D. Hypoxanthine-guanine phosphoribosyl-transferase as a therapeutic target in protozoan infections. Infect. Agents Dis. 4, 29–40 (1995).

    CAS  PubMed  Google Scholar 

  3. Musick, D.L. Structural features of the phosphoribosyltransferases and their relationship to the human deficiency disorders of purine and pyrimidine metabolism. CRC Crit. Rev. Biochem. 11, 1–34 (1981).

    Article  CAS  Google Scholar 

  4. Eads, J.C., Scapin, G., Xu, Y., Grubmeyer, C. & Sacchettini, J.C. The crystal structure of human hypoxanthine-guanine phosphoribosyl-transferase with bound GMP. Cell 78, 325–334 (1994).

    Article  CAS  Google Scholar 

  5. Scapin, G., Ozturk, D.H., Grubmeyer, C. & Sacchettini, J.C. The crystal structure of the orotate phosphoribosyltransferase complexed with orotate and α-D-phosphoribosyl-1-pyrophosphate. Biochemistry 34, 10744–10754 (1995).

    Article  CAS  Google Scholar 

  6. Somoza, J.R., Chin, M.S., Foda, P.J., Wang C.C. & Fletterick R.J. Crystal structure of the hypoxanthine-guanine-xanthine phosphoribosyl-transferase from the protozoan parasite Tritrichomonas foetus. Biochemistry 35, 7032– 7040 (1996).

    Article  CAS  Google Scholar 

  7. Schumacher, M.A., Carter, D., Roos, D.S., Ullman, B. & Brennan R.G. Crystal structures of Toxoplasma gondii HGXPRTase reveal the catalytic role of a long flexible loop. Nature Struct. Biol. 3, 881–887 (1996).

    Article  CAS  Google Scholar 

  8. Focia, P.J., Craig, S.P. & Eakin, A.E. Approaching the transition state in the crystal structure of a phosphoribosyltransferase. Biochemistry 37, 17120–17127 (1998).

    Article  CAS  Google Scholar 

  9. Krahn, J.M., Kim, J.H., Burns, M.R., Parry, R.J. Zalkin, H. & Smith, J.L. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 36, 11061– 11068 (1997).

    Article  CAS  Google Scholar 

  10. Xu, Y., Eads, J., Sacchettini, J.C. & Grubmeyer, C. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry. Biochemistry 36, 3700–3712 (1997).

    Article  CAS  Google Scholar 

  11. Li, C.M., Tyler, P.C., Furneaux, R.H., Kicska, G., Xu, Y, Grubmeyer, C., Girvin, M. & Schramm, V.L. Transition-state analogues as inhibitors of human and malarial hypoxanthine-guanine phosphoribosyltransferases. Nature Struct. Biol. 6, 582–587 (1999).

    Article  CAS  Google Scholar 

  12. Xu, Y. & Grubmeyer, C. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp-137 acts as a general acid/base. Biochemistry 37, 4114–4124 (1998).

    Article  CAS  Google Scholar 

  13. Tao, W., Grubmeyer, C. & Blanchard, J.S. Transition state structure of Salmonella typhimurium orotate phosphoribosyltransferase. Biochemistry 35, 14–21 (1996).

    Article  CAS  Google Scholar 

  14. Horenstein, B.A. & Schramm, V.L. Correlation of the molecular electrostatic potential surface of an enigmatic transition state with novel transition state inhibitors. Biochemistry 32, 9917–9925 (1993).

    Article  CAS  Google Scholar 

  15. Degano, M., Almo, S.C., Sacchettini, J.C. & Schramm, V.L. Trypanosomal nucleoside hydrolase. A novel mechanism from the structure with a transition-state inhibitor. Biochemistry 37, 6277–6285 (1998).

    Article  CAS  Google Scholar 

  16. Berti, P.J. & Schramm, V.L. Transition state structure of the solvolytic hydrolysis of NAD+. J. Am. Chem. Soc. 119, 12069–12078 (1997).

    Article  CAS  Google Scholar 

  17. Vos, S., Parry, R.J., Burns, M.R., de Jersey, J. & Martin, J.L. Structures of free and complexed forms of Escherichia coli xanthine-guanine phosphoribosyltransferase. J. Mol. Biol. 282, 875–889 (1998).

    Article  CAS  Google Scholar 

  18. Jardim, A. & Ullman B. The conserved serine-tyrosine dipeptide in Leishmania donovani hypoxanthine-guanine phosphoribosyltransferase is essential for catalytic activity. J. Biol. Chem. 272, 8967–8973 (1997).

    Article  CAS  Google Scholar 

  19. Hove-Jensen, B., Harlow, K.W., King, C.J. & Switzer, R.L. Phosphoribosylpyrophosphate synthetase of Escherichia coli: properties of the purified enzyme and primary structure of the prs gene. J. Biol. Chem. 267, 6765–6771 (1986).

    Google Scholar 

  20. Wilson, J.M., Stout, J.T., Palella, T.D., Davidson, B.L., Kelley, W.N. & Caskey, C.T. A molecular survey of hypoxanthine-guanine phosphoribosyltransferase deficiency in man. J. Clin. Invest. 77, 188–195 (1986).

    Article  CAS  Google Scholar 

  21. Laskowski, R.A., MacArthur, M.W. & Thorton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  23. Navaza, J. AmoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  24. Brüunger, A.T. X-PLOR version 3.1. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  25. Jones T.A. Interactive computer program graphics: Frodo. Methods Enzymol. B 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  26. Johnson, G.G., Eisenberg, L.R. & Migeon, B.R. Human and mouse hypoxanthine guanine phosphoribosyl transferase: dimers and tetramers. Science 203, 174–176 (1979).

    Article  CAS  Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Evan, S.V. SETOR: hardware lighted three dimensional solid model representation of macromolecules. J. Mol. Graphics 11, 134– 138 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vern L. Schramm or Steven C. Almo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Li, C., Tyler, P. et al. The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat Struct Mol Biol 6, 588–593 (1999). https://doi.org/10.1038/9376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing